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selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Osnabrück, August 2010
Hendrik Baier





iii

Contents

Abstract xiii

Acknowledgements xv

Conventions xvii

1 Introduction 1

1.1 Artificial Intelligence and Games . . . . . . . 1

1.2 The Challenge of Go . . . . . . . . . . . . . . 3

1.3 Monte Carlo Tree Search . . . . . . . . . . . . 5

1.4 Overview . . . . . . . . . . . . . . . . . . . . . 6

2 Reinforcement Learning 9

2.1 Exploration and Exploitation . . . . . . . . . 10

2.1.1 The Multi-Armed Bandit Problem . . 10

2.2 Markov Decision Processes . . . . . . . . . . 12

2.3 Solving MDPs . . . . . . . . . . . . . . . . . . 15

2.3.1 Value Functions . . . . . . . . . . . . . 15



iv Contents

2.3.2 Generalized Policy Iteration . . . . . . 16

2.4 Learning from Experience: Monte Carlo
Methods . . . . . . . . . . . . . . . . . . . . . 17

2.5 Learning from Simulated Experience: Planning 20

2.6 Planning for the Current State: Search . . . . 21

2.6.1 Sampling-Based Search . . . . . . . . 22

2.7 Monte Carlo Tree Search . . . . . . . . . . . . 24

2.7.1 Informal Description . . . . . . . . . . 24

2.7.2 MCTS and Reinforcement Learning . 26

2.7.3 Pseudocode . . . . . . . . . . . . . . . 29

3 Computer Go 31

3.1 The Game of Go . . . . . . . . . . . . . . . . . 31

3.1.1 History . . . . . . . . . . . . . . . . . . 31

3.1.2 Rules . . . . . . . . . . . . . . . . . . . 33

3.1.3 Basic Concepts . . . . . . . . . . . . . 35

3.1.4 Ratings . . . . . . . . . . . . . . . . . . 40

3.2 Traditional Computer Go . . . . . . . . . . . 42

3.2.1 Beginnings of Computer Go . . . . . . 43

3.2.2 Subproblems of Go . . . . . . . . . . . 44

3.2.3 Problems of Traditional Computer Go 45

3.2.4 Strength of Traditional Computer Go 45

3.3 Monte Carlo Go . . . . . . . . . . . . . . . . . 46



Contents v

3.3.1 Beginnings of Monte Carlo Go . . . . 46

3.3.2 Approaches to Monte Carlo Tree Search 49

Expansion Phase . . . . . . . . . . . . 49

Backpropagation Phase . . . . . . . . 49

Selection Phase . . . . . . . . . . . . . 50

3.3.3 Strength of Monte Carlo Go . . . . . . 53

3.4 Playout Strategies in Monte Carlo Go . . . . 54

3.4.1 Static Playout Policies . . . . . . . . . 55

3.4.2 Dynamic Playout Policies . . . . . . . 58

4 Problem Statement 63

4.1 Current Deficiencies of MCTS . . . . . . . . . 63

4.1.1 Handicaps . . . . . . . . . . . . . . . . 63

4.1.2 Narrow Sequences . . . . . . . . . . . 64

4.2 Goal of this Work . . . . . . . . . . . . . . . . 66

4.2.1 Preliminary Considerations . . . . . . 67

4.2.2 Move Answers . . . . . . . . . . . . . 68

4.3 Experimental Framework . . . . . . . . . . . 69

5 Adaptive Playouts via Best Replies 71

5.1 Conditional Value Estimates . . . . . . . . . . 71

5.2 Move Answer Tree . . . . . . . . . . . . . . . 73

5.2.1 Outline of Implementation . . . . . . 74



vi Contents

5.3 Preliminary Experiments . . . . . . . . . . . . 78

5.3.1 Improvement of Local Play . . . . . . 79

5.3.2 Failure in Game Performance . . . . . 81

5.3.3 Discussion . . . . . . . . . . . . . . . . 86

6 Adaptive Playouts via Last Good Replies 89

6.1 The Last-Good-Reply Policy . . . . . . . . . . 89

6.1.1 Experimental Results . . . . . . . . . . 91

6.2 Forgetting . . . . . . . . . . . . . . . . . . . . 91

6.2.1 Experimental Results . . . . . . . . . . 92

6.3 Variants . . . . . . . . . . . . . . . . . . . . . . 95

6.3.1 Per-Node LGR . . . . . . . . . . . . . 95

Experimental Results . . . . . . . . . . 96

6.3.2 Pattern LGR . . . . . . . . . . . . . . . 97

Experimental Results . . . . . . . . . . 98

6.3.3 Last Good Follow-ups . . . . . . . . . 99

Experimental Results . . . . . . . . . . 100

6.3.4 Indirect LGR . . . . . . . . . . . . . . . 101

Experimental Results . . . . . . . . . . 102

6.3.5 Multiple Reply LGR . . . . . . . . . . 103

Multiple Replies sorted by Age . . . . 103

Experimental Results . . . . . . . . . . 105

Multiple Replies Unsorted . . . . . . . 106



Contents vii

Experimental Results . . . . . . . . . . 106

6.3.6 Decaying LGR . . . . . . . . . . . . . . 107

Experimental Results . . . . . . . . . . 108

6.3.7 Last Bad Replies . . . . . . . . . . . . 109

Experimental Results . . . . . . . . . . 110

6.3.8 LGR Priority . . . . . . . . . . . . . . . 111

Experimental Results . . . . . . . . . . 111

6.3.9 Ignoring the Tails of Playouts . . . . . 112

Experimental Results . . . . . . . . . . 113

6.3.10 Ignoring Captured Stones . . . . . . . 113

Experimental Results . . . . . . . . . . 114

6.3.11 Last Good Moves . . . . . . . . . . . . 114

Experimental Results . . . . . . . . . . 115

6.3.12 Local LGR . . . . . . . . . . . . . . . . 116

Experimental Results . . . . . . . . . . 118

6.3.13 Scoring LGR . . . . . . . . . . . . . . . 119

Experimental Results . . . . . . . . . . 120

6.3.14 Move Answer Tree with Last Good
Replies . . . . . . . . . . . . . . . . . . 121

Experimental Results . . . . . . . . . . 123

7 Other Experiments 125

7.1 Multi-Start MCTS . . . . . . . . . . . . . . . . 125



viii Contents

7.1.1 Experimental Results . . . . . . . . . . 126

7.2 Feasibility . . . . . . . . . . . . . . . . . . . . 126

7.2.1 Experimental Results . . . . . . . . . . 127

7.3 Pattern Memory . . . . . . . . . . . . . . . . . 128

7.3.1 Experimental Results . . . . . . . . . . 129

7.4 Dynamic Komi . . . . . . . . . . . . . . . . . 130

7.4.1 Experimental Results . . . . . . . . . . 131

8 Conclusion and Future Work 133

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . 133

8.2 Future Work . . . . . . . . . . . . . . . . . . . 135

8.2.1 Best Replies . . . . . . . . . . . . . . . 135

8.2.2 Last Good Replies . . . . . . . . . . . 135

8.2.3 The Road Ahead . . . . . . . . . . . . 136

Bibliography 139



ix

List of Figures

3.1 A game position after the first four moves. . 34

3.2 A game position after the game has ended. . 34

3.3 A position with five strings. . . . . . . . . . . 35

3.4 A string in atari. . . . . . . . . . . . . . . . . . 36

3.5 Escaping atari. . . . . . . . . . . . . . . . . . . 36

3.6 Capturing stones. . . . . . . . . . . . . . . . . 37

3.7 Example of suicide. . . . . . . . . . . . . . . . 37

3.8 Rule application order. . . . . . . . . . . . . . 38

3.9 A string is alive. . . . . . . . . . . . . . . . . . 38

3.10 Example of a group. . . . . . . . . . . . . . . . 39

3.11 The placement of four handicap stones. . . . 39

4.1 Local move answers. . . . . . . . . . . . . . . 68

5.1 The move answer tree. . . . . . . . . . . . . . 75

5.2 Updated move answer tree. . . . . . . . . . . 76

5.3 Extended move answer tree. . . . . . . . . . . 77



x List of Figures

5.4 A position with a local fight. . . . . . . . . . . 79

5.5 Performance of the BMR policy. . . . . . . . . 82

5.6 Performance of the BMR-2 policy. . . . . . . . 83

5.7 Performance of the BMR-P policy. . . . . . . . 86

5.8 Performance of the BMR-P-2 policy. . . . . . 87

6.1 Performance of the LGR policies. . . . . . . . 91

6.2 Performance of the LGRF policies. . . . . . . 93

6.3 Scaling of the LGR and LGRF policies. . . . . 94

6.4 Performance of the PNLGR policy. . . . . . . 97

6.5 Performance of the PLGR policy. . . . . . . . 99

6.6 Performance of the LGF policy. . . . . . . . . 101

6.7 Performance of the ILGR policies. . . . . . . . 103

6.8 Performance of the MLGR-A policies. . . . . 105

6.9 Performance of the MLGR-U policies. . . . . 107

6.10 Performance of the LGRF-2-D policies. . . . . 108

6.11 Performance of the LBR-2 policy. . . . . . . . 110

6.12 Performance of the ELGRF-2 policy. . . . . . 112

6.13 Performance of the LGRF-MAX200 policy. . . 113

6.14 Performance of the LGRF-2-S policy. . . . . . 114

6.15 Performance of the MLGR-U policies. . . . . 116

6.16 The knight’s neighborhood of e5. . . . . . . . 117

6.17 Performance of the LGRF-2-L policies. . . . . 118



List of Figures xi

6.18 Performance of the LGM-2-L policies. . . . . 119

6.19 Performance of the LGRS policies. . . . . . . 121

6.20 The LGR-MAT tree. . . . . . . . . . . . . . . . 122

6.21 Performance of the LGR-MAT policies. . . . . 123

7.1 Performance of the LGRF-2-M-a policy. . . . 126

7.2 The large knight’s neighborhood of e5. . . . . 128

7.3 Performance of the LGRF-2-F policies. . . . . 128

7.4 Performance of the LGRF-2-PM policy. . . . . 130

7.5 Performance of the LGRF-2-DK policy. . . . . 132





xiii

Abstract

Go is a classical board game originating in China at least 2500 years ago. It is
surrounded by a rich culture and tradition and famed for its profound depth and
complexity arising from very simple rules. Go is deterministic, fully observable,
state and action space are both discrete and finite; yet despite 40 years of efforts,
writing a program to play Go on the level of human experts still stands as one of
the grand challenges of AI. Techniques developed for such a program are likely to
be applicable to many other game and non-game domains.
The traditional game programming technique of Alpha-Beta search with static eval-
uation functions does not apply well to Go: Its game tree is too large to be traversed
even at shallow depths, and its positions are too dynamic to be effectively evalu-
ated mid-game.
The dominant paradigm for computer Go players, Monte-Carlo Tree Search, uses
statistical sampling to make move decisions. It gradually deepens a search tree in
a best-first fashion by playing a large number of simulated games–playouts–and
averaging their outcomes as an approximation to the value of a position. Playout
moves in unknown situations are chosen according to quasirandom policies which
favor good-looking moves without sacrificing sampling diversity.
The specific probabilistic policy used for selecting moves during playouts is of vital
importance to the success of Monte-Carlo simulation in Go. So far however, such
playout policies have generally been static, i.e. they have only exploited general ex-
pert knowledge or information learned offline from game databases or self-play. In
this thesis, adaptive or dynamic playout policies are explored that take advantage
of knowledge learned directly from previous playouts in the search. In this way, the
sampling process improves itself even beyond the leaves of the search tree, leading
to a significant increase in playing strength.
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Kühnberger who accepted my thesis proposal and made this work possible by of-
fering their advice and support.
Furthermore, I would like to express my gratitude to Peter Drake for the consider-
able amount of time he invested in answering my early questions concerning many
aspects of doing research on computer Go; for the interesting discussions and fruit-
ful cooperation that followed; for reading my thesis and giving countless construc-
tive suggestions to improve it; and of course for the continuing development of
OREGO, the program used for all experiments in this thesis.
Moreover, I would like to thank Udo Waechter, Martin Schmidt, Friedhelm
Hofmeyer, Dirk große Osterhues and Sang-Hyeun Park for their technical support
and their efforts to solve all problems surrounding testing and evaluation.
I am grateful to Artus Rosenbusch for introducing me to the beautiful game of Go
many years ago.
And finally, I would like to thank Corinna Zennig for her neverending support, her
patience and her understanding whenever I could not stop thinking about Go; and
for being the reason whenever I could.





xvii

Conventions

The following conventions are used throughout this thesis:

� Pseudo code is written in a typewriter-style font.

print(‘‘This is pseudo code’’);

� Hat notation denotes estimates.

x̂ is an estimate of x.

� Small capital letters denote names of programs.

This thesis is based on OREGO.

� Curly brackets denote nested if-then-else-statements.
The cases are used top-to-bottom if the corresponding
conditions apply.

x 

8<
:
3 if it is Wednesday

5 if it is June

On a Wednesday in June, the above statement assigns
3 to x. The corresponding pseudocode is

if(date.day==wednesday) {
x = 3;

} else if(date.month==june) {
x = 5;

}
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Chapter 1

Introduction

“Sooner or later, AI will overcome this
scandalous weakness.”

—John McCarthy

1.1 Artificial Intelligence and Games

Games have been a cornerstone of AI research ever since
the early pioneering days. Only four years after the
construction of ENIAC, the world’s first general-purpose
electronic computer, Claude Shannon published a paper
on computer chess (Shannon, 1950). The checkers pro-
gram written by Christopher Strachey at the University of
Manchester in 1951 was one of the first successful AI pro-
grams. Classic board games like chess and checkers with
their well-defined rules not only provide ideal abstractions
from real-world situations, so-called “toy problems”, and
allow for straightforward comparison of algorithm perfor-
mance. They also have an intuitive appeal to the general
population, and their mastery is considered the epitome of
intelligence and rational thought by many. Before the term
artificial intelligence was even coined in 1956, researchers
had been fascinated by the idea of challenging human in-
tellectual supremacy by teaching a computer how to play.
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With the optimism of the “golden years” of AI, Herbert A.
Simon and Allen Newell predicted in 1958 that “within ten
years a digital computer will be the world’s chess cham-
pion” (Simon and Newell, 1958). It turned out to take three
more decades to reach that level. But throughout these
years and beyond, chess and other games have proved
excellent test-beds for new ideas, architectures and algo-
rithms, illustrating many important problems and leading
to successful generalizations for work in other fields (Lu-
cas, 2008; Lucas and Kendall, 2006). Chess became, with the
words of the Russian mathematician Alexander Kronrod
in 1965, the “drosophila of artificial intelligence” (McCarthy,
1990). Raj Reddy called the game an “AI problem par excel-
lence” in his presidential address to AAAI in 1988, listing
computer chess together with natural language, speech, vi-
sion, robotics and expert systems (Reddy, 1988).

Over the last decades, many of AI’s most notable successes
were connected to game-playing (Schaeffer and van den
Herik, 2002). In 1994, the World Man-Machine Champi-
onship in checkers was won by the program CHINOOK

(Schaeffer et al., 1992; Schaeffer, 1997). In 1997, the dedi-
cated chess computer DEEP BLUE defeated reigning World
Chess Champion Garry Kasparov under standard tourna-
ment conditions (Campbell et al., 2002; Hsu, 2002). A few
months later, World Othello Champion Takeshi Murakami
lost to the program LOGISTELLO (Buro, 1997). AI has also
tackled imperfect-information games, which pose the addi-
tional problem of partially non-observable game states, and
stochastic games, which include an element of chance. TD-
GAMMON only barely lost to World Backgammon Cham-
pion Malcolm Davis in 1998, and programs have since
grown stronger (Tesauro, 2002). Matt Ginsberg’s GIB is
playing bridge on master level (Ginsberg, 2001).

However, many challenges remain: In Poker, for example,
programs have to deal with hidden information as well
as opponent modelling for multiple players to understand
basic “bluffing” tactics (Billings et al., 2002). New board
games have been invented (Teytaud and Teytaud, 2009; An-
shelevich, 2002; Lieberum, 2005)—some of them explicitly
constructed to be difficult for traditional game-playing al-
gorithms, encouraging new approaches e.g. for large action
spaces (Fotland, 2004). Researchers have begun work on
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General Game Playing (GGP)—the quest for a program that
is able to play not only one specific game, but all games
whose rules can be defined in a Game Description Lan-
guage (Genesereth et al., 2005). Supported by a growing
industry, computer games with continuous state and action
spaces call for more intelligent and believable artificial op-
ponents and allies (Laird and van Lent, 2001; Buro, 2004).
Team games in real-time settings foster research into AI and
robotics (Kitano et al., 1998). And in the classical games of
Shogi and Go, human masters are still far stronger than any
program written to date.

50 years after their publication, Arthur Samuel’s words still
hold true (Samuel, 1960):

Programming computers to play games is
but one stage in the development of an under-
standing of the methods which must be em-
ployed for the machine simulation of intellec-
tual behavior. As we progress in this under-
standing it seems reasonable to assume that
these newer techniques will be applied to real-
life situations with increasing frequency, and
the effort devoted to games (. . . ) will decrease.
Perhaps we have not yet reached this turning
point, and we may still have much to learn from
the study of games.

1.2 The Challenge of Go

As noted in Silver (2009), computer Go is in many ways
the best case for AI. Other than in GGP, the rules of the
game are known; compared to chess, they are simple; un-
like those of backgammon, they are deterministic; other
than in poker, the state is fully observable; different from
many video games, state and action space are both discrete
and finite; and other than in newly invented board games,
strategy and tactics of Go are well-known and have been
developed over centuries. Except for rare capture moves,
board positions change incrementally, one stone at a time,
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until the game terminates after a finite number of moves
with a binary result.

The immense popularity and rich tradition of Go with mil-
lions of players and a thriving scene of professionals—
in particular in Japan, China and Korea—has stimulated
considerable research efforts in computer Go over the last
decades, second only to computer chess. From 1985 to
2000, the Taiwanese Ing Foundation sponsored an annual
computer Go event, offering a top prize of over one and a
half million dollars for the first program to defeat a profes-
sional player. Yet while 10 years after DEEP BLUE’s much-
noticed success against Kasparov, chess is now played on
super-human level by software on regular desktop com-
puters (McClain, 2006), Go AI is still in its infancy, with the
best programs only recently achieving low amateur master
strength. The Ing Prize remained unclaimed.

The challenge of computer chess has been answered suc-
cessfully by the combination of fine-tuned domain-specific
position evaluation functions with exhaustive game tree
search—made highly efficient through pruning techniques
like the Alpha-Beta algorithm (Knuth and Moore, 1975) and
flexible through selective search extensions like quiescence
search (already predicted in Shannon (1950)). Since it typi-
cally involves the evaluation of millions of chess positions
per second, some have described this approach as “brute-
force”; and regarding chess as the “drosophila of AI”, John
McCarthy remarked disappointedly, “Computer chess has
developed much as genetics might have if the geneticists
had concentrated their efforts starting in 1910 on breeding
racing Drosophila. We would have some science, but mainly
we would have very fast fruit flies” (McCarthy, 1997).

However, computer chess methods turned out to be far
from universally applicable even in the class of determin-
istic, two-player, zero-sum, perfect-information games. Go
has so far resisted all known variants of brute-force search,
not only due to the sheer size of its state space, but even
more so due to the seemingly impregnable subtleties of po-
sition evaluation (see section 3.2). For many researchers,
Go has therefore replaced chess as a new drosophila, a new
grand challenge of AI (Schaeffer and van den Herik, 2002;
Kitano et al., 1993; Cai and Wunsch, II, 2007). Go program-
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ming has not yet become engineering, “Go sends investiga-
tors back to the basics—to the study of learning, of knowl-
edge representation, of pattern recognition and strategic
planning” (Mechner, 1998).

In the words of James Hendler (Hendler, 2006):

Exploring the things that humans can do,
but that we can’t yet even imagine how to get
computers to perform, is still the hallmark and
challenge of AI. Pursuing it will keep the next
50 years of our field just as exciting as the past
half century has been. In short, it’s time to learn
how to play Go.

1.3 Monte Carlo Tree Search

Monte Carlo simulation algorithms base their decisions not
on exhaustive search of states, but on statistical sampling
of possible states or future states (see section 2.4). They have
seen their first successful game-related use in nondetermin-
istic games for the sampling of random elements like dice
or playing cards, and in partially observable games for the
sampling of hidden information (Billings et al., 2002; Shep-
pard, 2002; Tesauro and Galperin, 1996). Applying simu-
lation to a game without any hidden or random elements
seems unintuitive; but in combination with selective tree
search (Gelly et al., 2006; Coulom, 2006), this idea has in-
creased the playing strength of top computer Go programs
from that of a weaker club player to that of an amateur mas-
ter.

After its introduction in 2006, Monte Carlo Tree Search
(MCTS) has quickly become the dominating paradigm in
computer Go. The algorithm searches for the best move in a
given position by selectively growing a search tree, guided
by repeatedly simulating complete games from the current
position (see section 2.7 for a detailed description). The suc-
cess of this approach lies in the ability of handling huge
game trees through sampling; in the elegant management
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of uncertainty through confidence intervals around move
evaluations; in the asymmetric tree growth, deepening the
search in the direction of the most promising moves; and in
the anytime property, allowing the user to stop the algorithm
at “any time” and retrieve the best move suggestion so far
(Gelly, 2007).

However, MCTS has its shortcomings. Its simulated games
(or “playouts”) are based on simple probabilistic policies—
since simulations need to be fast and diverse, move choices
are usually relatively random. Integrating domain knowl-
edge into the playouts has proven to be difficult without
creating too much determinism and bias (Gelly and Silver,
2007; Silver and Tesauro, 2009). Thus, MCTS essentially an-
swers the question: If I was to move here, would that im-
prove my winning chances given relatively random play by
both players?

On the one hand, this enables the algorithm to assess the
overall strategic quality of a move without making assump-
tions about playing styles. On the other hand, it leads to
relatively bad tactical play, because narrow sequences of
required moves—often obvious to human players—are not
correctly simulated (see section 4.1.2).

The primary question of this thesis is whether the problem
of narrow sequences can be effectively solved by dynamic
playout policies, i.e. by policies that are able to learn on-line
from preceding playouts in the search process.

1.4 Overview

In the first part of this thesis, the literature is reviewed and
the necessary background for this work is introduced:

� Chapter 2 describes the general framework of rein-
forcement learning and the place Monte Carlo Tree
Search holds within it.

� Chapter 3 presents the application field of computer
Go and reviews previous literature on simulation
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policies for Monte Carlo methods in Go.

� Chapter 4 clarifies the research problem and states the
goal of this work.

In the second part of the thesis, experiments on Monte
Carlo Tree Search in Go are presented, divided into three
groups:

� Chapter 5 deals with the first approach, the idea of
collecting and using statistics about optimal move
replies during search.

� Chapter 6 reports on the second approach, the idea
of collecting and using single examples of successful
move replies to any given opponent move, instead of
trying to find the best one.

� Chapter 7 contains documentation of other experi-
ments related to various aspects of Monte Carlo Tree
Search.

The third part of the thesis, consisting of chapter 8, con-
cludes by summarizing results and contributions, and
looks ahead to further work.
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Chapter 2

Reinforcement Learning

Reinforcement learning is the study of learning from inter-
action how to achieve a goal. It deals with the problem
of learning optimal behavior, without being given descrip-
tions or examples of such, solely from acting and observ-
ing the consequences of actions. The classical reinforce-
ment learning task consists of an interactive loop between a
learning agent and its environment: The agent repeatedly ob-
serves its situation—the state of the environment—, chooses
an action to perform, and receives a response in form of a
numerical reward signal, indicating success or failure. In
most interesting cases, the agent’s actions can also affect the
next state. Trying to maximize its cumulative reward in the
long run, the agent therefore has to learn by trial-and-error
how his action choices influence not only immediate, but
also delayed rewards.

This simple problem formulation, more precisely specified
in section 2.2, captures the elementary aspects of learning
from interaction with an environment. Its study has led to
a variety of algorithms with strong theoretical underpin-
nings and notable practical successes: From animal behav-
ior (Sutton and Barto, 1990) to helicopter control (Abbeel
et al., 2007), from marketing (Abe et al., 2004) to vehicle
routing (Proper and Tadepalli, 2006), from trading (Nevmy-
vaka et al., 2006) to spoken dialogue systems (Singh et al.,
2002), from brain modelling (Schulz et al., 1997) to robot
soccer (Stone and Sutton, 2001). This chapter introduces
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some of the basic concepts of reinforcement learning, with
emphasis on the class of Monte Carlo methods which have
revolutionized computer Go in recent years. This forms the
foundation for the presentation of Monte Carlo Tree Search.

2.1 Exploration and Exploitation

An agent faced with the reinforcement learning problem
has to learn from its own experience, without explicit guid-
ance or supervision. One typical challenge of this task is the
tradeoff between exploration and exploitation. Exploration
means the trial of new behaviors, the choice of actions that
have not been tried before, in order to determine their ef-
fects and returns. Exploitation, on the other hand, denotes
the choice of actions that are known to be successful, the
application of learnt knowledge, in order to generate the
maximal reward.

In stochastic environments, where the reward to a given
action in a given situation is a random variable, many sam-
ples may be needed to estimate the expected rewards of
the agent’s options. Finding the optimal balance between
exploration and exploitation, determining when to trust in
acquired knowledge and when to seek for more informa-
tion or certainty, is a non-trivial task.

2.1.1 The Multi-Armed Bandit Problem

The simplest setting in which this task can be studied is the
case of the one-state environment. In the co-called multi-
armed bandit problem (Robbins, 1952), an analogy is drawn
to slot machines, casino gambling machines also known as
“one-armed bandits” because they are operated by a single
lever. The multi-armed bandit problem confronts the gam-
bler with a number of arms instead, each of which provides
a reward drawn from its own probability distribution. The
gambler, initially without knowledge about the expected
values of the arms, tries to maximize his total reward by
repeatedly trying arms, updating his estimates of the re-
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ward distributions, and gradually focusing on the most
successful arms. Exploitation in this scenario corresponds
to choosing the arm with currently highest estimated value;
exploration corresponds to choosing one of the seemingly
suboptimal arms in order to improve its value estimate,
which may lead to greater accumulated reward in the long
run.

Formally, the multi-armed bandit problem is defined by a
finite set of arms or actions A = f1; : : : ; ag, each arm a 2 A

corresponding to an independent random variable Xa with
unknown distribution and unknown expectation �a. At
each time step t 2 f1; 2; : : :g, the gambler algorithm chooses
the next arm at to play depending on the past sequence of
selected arms and obtained rewards, and the bandit returns
a reward rt as a realization of Xat . Let Ta(n) be the number
of times arm a has been played during the first n time steps.
Then the objective of the gambler is to minimize the regret
defined by

��n�
AX
a=1

�aE [Ta(n)] (2.1)

where �� = max1�i�A �i and E denotes expectation.

Let Q�(a) be the true (unknown) value of arm a, and Q̂t(a)
the estimated value after t time steps, typically the average
of the rewards received from choosing this arm up to time
step t � 1. One simple way of balancing exploration and
exploitation is �-greedy action selection: This gambler algo-
rithm is defined by choosing with probability 1��, for small
� 2 R, the greedy action, i.e. the arm with currently highest
estimated value (a�t such that Q̂t�1(a

�
t ) = maxa Q̂t�1(a)).

With probability �, a random action is chosen, such that in-
finite exploration of all actions is guaranteed and all Q̂t(a)
converge to Q�(a).

Instead of choosing randomly among all actions when ex-
ploring, softmax action selection rules give selection proba-
bilities to all actions as a graded function of their currently
estimated value. The most common softmax method uses a
Gibbs, or Boltzmann, distribution, choosing action a on time
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step t with probability

eQ̂t�1(a)=TP
i e

Q̂t�1(i)=T
(2.2)

where T is a temperature parameter, regulating the tradeoff
between exploration and exploitation.

More sophisticated and efficient algorithms have been de-
veloped. Lai and Robbins (1985) showed that the best regret
obtainable grows logarithmically with the number of time
steps t; Auer et al. (2002) achieved logarithmical regret not
only in the limit, but uniformly over time. Their algorithm,
in its simplest form, is defined by first trying each action
once to get an initial estimate, and then selecting the action
a that maximizes

Q̂(a) +

s
2 ln(n)

na
(2.3)

where na is the number of times a was chosen so far, and
n is the total number of trials so far. Action values are ex-
ploited by the first, and explored by the second summand,
representing a confidence interval for the expected reward.
This is called the UCB formula (for Upper Confidence Bound),
variations of which were influential in Monte Carlo Tree
Search in Go (see section 3.3).

2.2 Markov Decision Processes

In the full reinforcement learning problem, the agent has
to learn how to act in more than one situation, and explores
the consequences of its actions both with regard to immedi-
ate rewards received, and to changing states of the environ-
ment. Most reinforcement learning research uses the math-
ematical framework of Markov decision processes (MDPs) to
formalize this problem (Puterman, 1994).
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A Markov decision process is defined as a 4-tuple
(S;A; P�(�; �); R�(�; �)), where:

� S is the set of states—in the case of Go, the set of game
positions;

� A is the set of actions—in our case, the set of moves1;

� Pa(s; s
0) = Pr(st+1 = s0jst = s; at = a) is the prob-

ability that choosing action a in state s at time t will
lead to state s0 at time t+1 (the transition function)—in
Go, the transition function can be used to model both
the rules of the game and the unknown behaviour
of the opponent player, who constitutes part of the
environment of the playing agent. If it is only used
to model the rules, transitions become deterministic2,
but the reinforcement learning formulation then has
to be extended to account for the opposing goals of
two agents (see section 2.7);

� Ra(s; s
0) is the direct reward given to the agent after

choosing action a in state s and transitioning to state
s0 (the reward function)—for the task of learning Go, a
useful reward function could be

Ra(s; s
0) =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

1
if, according to the rules of
Go, position s0 is a winning
terminal position

�1
if, according to the rules of
Go, position s0 is a lost
terminal position

0 otherwise3

Model-based reinforcement learning methods assume that
the transition and reward functions of the environment are

1The set of available moves depends on the current position s 2 S;
where necessary, it is referred to as A(s).

2In the deterministic case, the simplified notation Pa(s) = s0 can be
used for the only state s0 with Pa(s; s

0) = 1.
3Draws are very rare in Go, but before the introduction of fractional

komi values like 5:5 points (see section 3.1.2), so-called jigo results were
possible with the same number of points for Black and White at the end
of the game. Depending on the ruleset, this could mean a win for White,
or hikiwake (draw).
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known to the learning agent. Model-free methods, such as
the Monte Carlo techniques described later, require only
experience and no prior knowledge of the environment’s
dynamics.

The defining property of MDPs is the Markov property, or
“independence of path” property—the fact that the agent
can gather all relevant information for predicting the fu-
ture and deciding about its actions from the current state
signal alone. Future states and rewards only depend on the
current state and action, and not on the history of states,
actions and rewards that have led up to it:

Pr(st+1; rt+1js1; a1; r1; s2; a2; r2; : : : ; st; at; rt)

= Pr(st+1; rt+1jst; at)
(2.4)

Finally, the behavior of the agent that is subject to learning
and optimization can be described by the notion of a policy,
a mapping � from states of the environment to probabilities
of selecting each possible action when in those states.

�(s; a) = Pr(at = ajst = s)4 (2.5)

In this work, we are dealing with an episodic task: The
agent’s experience can naturally be divided into indepen-
dent sequences of interactions leading from a start state
to one of a number of terminal states. In our case, these
episodes are individual games leading from the empty
board to a win or loss. The goal of the agent in an episodic
task is finding a policy that, at any point in time t, maxi-
mizes the expected total accumulated reward (or return R)
collected during the rest of an episode:

Rt = rt+1 + rt+2 + : : :+ rT (2.6)

where T is the final time step of the episode.
4For deterministic policies, one can simplify by writing �(s) = a for

the only action a with �(s; a) = 1.
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In our formalization of the Go learning task, this corre-
sponds to finding a policy that reaches a winning terminal
state in order to receive the reward of 1, or as an approxi-
mation: a policy that maximizes the probability of reaching
a winning state of the game. In the next section, a general
approach to solving this task is described.

2.3 Solving MDPs

2.3.1 Value Functions

While rewards for reaching a particular state are given im-
mediately by the environment (according to the reward
function), a more informative quantity for the agent is
the total amount of reward, the return, it can expect to
receive starting from a given state over the entire rest
of the episode. This quantity, predicting the long-term
worth of a state to the agent, is not directly given by the
environment—it has to be estimated from experience, and
can subsequently be used to design better policies. In many
successful reinforcement learning algorithms, it is repre-
sented in form of a value function, mapping each state (or
state-action pair) to an estimate of how desirable it is to be
in that state (or how desirable it is to perform that action
when in that state).

Since the expected future rewards depend on the actions
the agent is going to take in the future, value functions are
defined with respect to a specific policy. The state-value
function (or just value function) V � is the expected return
when starting in a given state and following policy � there-
after. The action-value function Q� is the expected return
when selecting a given action in a given state and following
policy � from there:

V �(s) = E� [Rtjst = s] (2.7a)
Q�(s; a) = E� [Rtjst = s; at = a] (2.7b)

where E� denotes expectation under policy �.
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Success in solving a reinforcement learning problem
amounts to finding a policy that guarantees high return.
Using value functions, one can define a partial ordering
over policies, such that one policy � is equal to or better
than another policy �0 if and only if the values of all states
under � are greater than or equal to their values under �0:

� � �0 () 8s 2 S: V �(s) � V �0(s) (2.8)

For every MDP, there is at least one policy that achieves the
largest possible return from all states, and is therefore better
than or equal to all other policies. This is called an optimal
policy ��. All optimal policies of an MDP share a unique
optimal value function V � and a unique optimal action-value
function Q�, defined by

8s 2 S: V �(s) = max
�

V �(s) (2.9a)

8s 2 S:8a 2 A(s): Q�(s; a) = max
�

Q�(s; a) (2.9b)

It is the agent’s goal to learn an optimal policy—or to ap-
proximate one as closely as possible, if constraints on com-
putation time or memory make it impossible to determine
or represent optimal actions for all states. This is the case
for Go with an estimated number of 10170 legal positions
(see section 3.2).

2.3.2 Generalized Policy Iteration

Policy evaluation is the process of computing the state-value
function V � for a given policy �, i.e. answering the ques-
tion what return can be expected from all states when fol-
lowing that policy. Policy improvement is the process of im-
proving a policy, given its state-value function—for exam-
ple by setting all of the policy’s action choices to the actions
that maximize return according to current value estimates.
This policy change in turn affects state values, which can be
computed again by policy evaluation; and so, value-based
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reinforcement learning algorithms can enter an iterative cy-
cle of improvement, alternatingly making the value func-
tion consistent with the current policy (policy evaluation)
and making the policy greedy with respect to the current
value function (policy improvement).

In fact, both interacting processes do not have to finish
before the other starts: They can be interleaved at a fine-
grained level, by shifting the value function only a little
bit into the direction of the current policy’s value func-
tion (policy evaluation), and optimizing the policy only
partly on the basis of the current value function (policy im-
provement). “As long as both processes continue to up-
date all states, the ultimate result is typically the same—
convergence to the optimal value function and an optimal
policy” (Sutton and Barto, 1998).

Abstracting from the specific methods used for evaluation
and improvement, and independent from the precise way
of integrating both processes, this general idea is called
generalized policy iteration (GPI). It works analogously for
state-action value functions instead of state-value func-
tions. GPI represents the core mechanism of most reinforce-
ment learning techniques, including Monte Carlo methods
as presented in the next section.

2.4 Learning from Experience: Monte
Carlo Methods

The term Monte Carlo (MC) methods generally refers to any
algorithm utilizing repeated random sampling in its com-
putations. In reinforcement learning, it is used to denote
a class of simple, model-free evaluation algorithms specifi-
cally tailored to episodic tasks.

As explained in section 2.3.1, the value of a state is the ex-
pected cumulative future reward starting from that state.
At the end of each episode, episodic tasks provide well-
defined sample returns for all states visited in that episode.
The return of a given state can therefore be estimated by
averaging the returns received after visits to that state in
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a number of complete episodes5. According to the law of
large numbers, averages converge to expected values as
samples increase, and thus Monte Carlo estimates converge
without bias to the true value function as the agent experi-
ences more and more episodes. Again, the same principle
applies to the estimation of state-action value functions6.
This averaging of complete sample returns is the basic idea
of Monte Carlo methods.

Combined with a greedy improvement strategy, a complete
learning algorithm according to the GPI schema can be de-
signed:

� Policy evaluation: After each episode of experience,
the state-action value estimate for each visited state-
action pair (s; a) is updated with the return follow-
ing the visit. The computation of the average can be
implemented incrementally with the backup assign-
ments

n(s;a)  � n(s;a) + 1 (2.10a)

Q̂�(s; a) � Q̂�(s; a) +
r � Q̂�(s; a)

n(s;a)
(2.10b)

where n(s;a) counts the total number of times action a

has been chosen from state s in all episodes so far, and
r is the return received after visiting state-action pair
(s; a) in the episode at hand—in our application case,
�1 for a lost game or 1 for a game that was eventually
won.

� Policy improvement: Before the start of the next
episode, the agent’s policy is made greedy with re-
spect to the new state-action value function. In the

5In this work, only first visits to a given state in any episode are con-
sidered (first-visit MC method). The ko rule of Go forbids game loops,
such that no state can be revisited in the same game (see section 3.1.2).

6If no model is available, it is more useful to estimate state-action val-
ues rather than state values, since they allow the determination of best
actions during policy improvement without explicit lookahead. This is
why in the following, state-action value functions are used. State values
are used analogously in section 2.7.2.
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case of our Go learning task, each position could sim-
ply be mapped deterministically to the maximally
valued move from this position:

�(s) = argmax
a2A(s)

Q̂�(s; a) (2.11)

However, extra measures need to be taken here to en-
sure exploration, since sample episodes of determin-
istic policies only contain information about the value
of a single action from each state. In order to allow for
estimating other actions, one can either select every
state-action pair with nonzero probability as the start
of an episode, following a deterministic policy there-
after; or one can modify the policy to have nonzero
probabilities of selecting all actions in all states.

Monte Carlo methods have two notable drawbacks: First,
they only learn on an episode-to-episode basis, not during
episodes. Estimates are only updated from the results of
finished episodes, not for example from the estimates of
successor states (bootstrapping). Second, since the return re-
ceived from an entire episode depends on a sequence of
many action choices and transitions, Monte Carlo value es-
timates have very high variance.

The advantages of Monte Carlo approaches are threefold:
First, they require no prior understanding of the environ-
ment’s dynamics, and are able to learn directly from expe-
rience instead. Second, they naturally focus learning on the
states and actions that are actually relevant to the agent’s
policy—often a very small subset of the whole state and ac-
tion spaces. In Go, for example, the number of board posi-
tions that are likely to appear in a game between competent
players is much smaller than the number of all legal posi-
tions. Third, as detailed in the next section, Monte Carlo
methods can work with simulated experience in the same
way they handle real experience.
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2.5 Learning from Simulated Experience:
Planning

The field of reinforcement learning encompasses learning as
well as planning methods7. Learning is the process of pro-
ducing or improving an agent policy given experience in
the environment, for example by using Monte Carlo meth-
ods as described in the last section. Planning is the process
of producing or improving an agent policy given a model of
the environment, i.e. solely through internal computation,
without any direct interaction with the environment.

The term model can be used for any knowledge the agent
has about the workings of the environment. A model pre-
dicts the next state (and reward8) given the current state
and a possible action the agent could take. If the environ-
ment’s dynamics are not deterministic—as in Go, where the
opponent’s behaviour cannot be foreseen precisely—this
prediction can in principle have one of two forms: A dis-
tribution model returns a complete probability distribution
over possible next states, as given by (an approximation
to) the transition function; and a generative model or sample
model returns one possible next state, sampled from (an ap-
proximation to) the transition function. In many domains,
it is much easier to construct an adequate sample model
to simulate an environment than to explicitly determine its
complete underlying distributions.

Given a sample model, an agent can select hypothetical
actions, sample their hypothetical consequences, and col-
lect hypothetical experience about their values. Whereas
the real environment generates real experience, a sample
model of the environment generates simulated experience.
This experience can be used for improving a policy to max-
imize expected return—with the same algorithms that can
be applied to real experience, e.g. Monte Carlo methods
as in section 2.4. If the model approximates reality closely
enough, the policy learnt through internal policy iteration

7The name “reinforcement learning” has historical roots. In this re-
spect, it is somewhat misleading.

8In Go, the reward distribution is known, so only state predictions
are of interest.
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will succeed when applied in the real environment of the
agent. This is the principle of Monte Carlo planning.

In Go programs, the sample model is typically constructed
by modelling the opponent’s behaviour with a policy sim-
ilar to that of the agent, but with the opposite goal9. As
mentioned before, this can be understood as an extension
of the reinforcement learning problem to two agents, tak-
ing turn in executing their actions. Alternatively, the oppo-
nent could be interpreted as an adaptive part of the envi-
ronment.

The advantage of Monte Carlo planning for a computer Go
player is that with a simplified model, thousands of games
can be simulated in seconds, giving the algorithm some sta-
tistical confidence in its value estimates and policy. Obtain-
ing such a large number of games against human players
would be infeasible. On the other hand, another problem
persists: Not only is a given position of Go forbidden to
appear twice in the same game—it is also extremely un-
likely to return in any future game, considering the huge
game tree. In addition, it is extremely difficult to success-
fully generalize from Go positions and acquire more com-
pact value function representations (see section 3.2). Hence,
it seems futile to store planning results.

2.6 Planning for the Current State: Search

Search is the process of producing or improving an agent
policy solely for the current state. Other than general plan-
ning algorithms which aim at finding optimal actions for
all states in the state space, or at least for states likely to
be visited by the current policy as in Monte Carlo plan-
ning, search is only concerned with the computation of the
agent’s optimal next action.

Search algorithms typically work by unfolding a search tree

9This method is based on the assumption of rational play, its own
policy being the best approximation to rationality the agent can provide.
Explicit opponent modelling has not yet been researched in Monte Carlo
Go.
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from the current state (called the root state), where each
branch corresponds to one possible transition of the envi-
ronment, and each node corresponds to one possible future
state (or state-action pair). An approximate value func-
tion is then applied to the leaf nodes, and interior nodes
are evaluated by recursively backing up these values, un-
til the available actions at the agent’s current state can be
estimated10. Finally, the best next action is selected to be
executed in the environment, and all search results are for-
gotten.

Other than the learning and planning methods covered so
far, search usually does not change any general policy or
value function of the agent; the approximate value func-
tion needed for the leaves of the tree is often hand-crafted
and remains static throughout the agent’s lifetime. Instead,
search focuses all computational and memory resources on
the computation of a partial policy for the current situation
and the immediate future of the agent. Interleaving search
and action on-line, the search algorithm itself can be con-
sidered a sophisticated policy. This makes search a highly
efficient technique in comparison to general planning, and
for large domains like Go the only viable option.

2.6.1 Sampling-Based Search

Full-width search refers to a class of search algorithms that
take into account all possible continuations from the root
state up to a certain depth, accounting for all possible next
actions of the agent and all possible next states of the en-
vironment in the tree. Evaluations of interior nodes are
computed by full backups from the values of all child nodes.
Variants used in game tree search include the well-known
Alpha-Beta algorithm (Knuth and Moore, 1975), a depth-first
search with minimax value backup and pruning of prov-
ably suboptimal moves. It has often been extended to a
variable-depth search, selectively deepening and exploring

10If the leaves reach the end of the episode, true values can be returned
and an optimal policy can be derived. Generally, this is not the case, and
bootstrapping is necessary: the derivation of estimates (at the root) from
other estimates (at the leaves).



2.6 Planning for the Current State: Search 23

the more promising continuations of play (see e.g. Camp-
bell et al. (2002)).

In domains with large branching factors, i.e. when the num-
ber of possible actions in a position and/or the number of
possible next states for a state-action pair is high on aver-
age, full-width search can be ineffective due to the expo-
nential growth of the tree with the branching factor. Sample-
based search solves this problem by not considering all possi-
ble successor states, but sampling only a certain number of
them according to a generative model as described in sec-
tion 2.5. Evaluations of interior nodes are determined by
sample backups from the value of a single sampled successor.
An example of this approach is the Sparse Sampling Planner
introduced in Kearns et al. (1999), where at each node up
to a given tree depth only a predetermined number of chil-
dren nodes is expanded.

Kearns’ algorithm explores the state space uniformly, with
constant width and depth regardless of the values returned.
Various improvements of his work consider exploration
policies as discussed in section 2.1.1 instead, gradually
shifting the focus of the search to higher-valued actions. In
Chang et al. (2005), for example, the action choice at every
interior node of the tree is treated as a multi-armed ban-
dit problem, and Auer’s UCB method is used for adaptive
sampling. In Péret and Garcia (2004), a Boltzmann distri-
bution is applied to the same task.

For the application scenario of Go, only one problem re-
mains: In the search techniques described so far, approx-
imate value functions are necessary to evaluate the tree’s
terminal nodes. However, it is extremely difficult to con-
struct reliable and fast evaluation functions for Go (see sec-
tion 3.2). A possible solution lies in the Monte Carlo princi-
ple: evaluation of states and actions through repeated ran-
dom sampling of episodes.
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2.7 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a best-first, sampling-
based search algorithm with Monte-Carlo evaluation. In-
dependently developed in similar form by Coulom (2006)
and Kocsis and Szepesvári (2006), MCTS is the central al-
gorithm in modern computer Go, and the framework of
this thesis. Beyond Go, variants have been applied suc-
cessfully in many other games such as Amazons (Lorentz,
2008), Lines of Action (Winands and Björnsson, 2009), Set-
tlers of Catan (Szita et al., 2009), Solitaire (Bjarnason et al.,
2009), Poker (den Broeck et al., 2009), real-time strategy
games (Balla and Fern, 2009), and General Game Playing
(Sharma et al., 2008). MCTS is also increasingly used for
high-dimensional control in non-game domains, e.g. in
de Mesmay et al. (2009) or Rolet et al. (2009).

In this section, Monte Carlo Tree Search is first described
informally; then framed as a reinforcement learning algo-
rithm and put in relation to the GPI schema; and finally
presented as pseudocode.

2.7.1 Informal Description

For each move decision of the Go-playing agent in a real
game, the MCTS algorithm grows a search tree to deter-
mine the best move. From the current position, this tree is
selectively deepened into the direction of the most promis-
ing moves, which are chosen according to the success of
simulated games starting with these moves.

The tree initially contains only the root node sr, represent-
ing the current game position. Each further node added to
the tree stands for one of its possible successor positions
s, and contains at least the visit count and the win count of
this position. The visit count is the number of times this
node has been sampled in the search process so far, and the
win count is the number of times a simulated game passing
through this node has been won by the player who reached
it.11. The win rate, win count divided by visit count, is the

11Values can either be represented from the point of view of alternat-
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current value estimate V̂ �(s) of position s.

MCTS works by repeating the following four-phase loop
until computation time runs out. It can be interrupted after
any number of iterations to return the current result. Each
complete loop represents one simulated game.

� Phase one: selection phase. The tree is traversed from
the root sr to one of the leaf nodes sl. At every
step, a selection policy is utilized to choose the move
to sample from this position. The selection policy
has to balance exploitation of positions with high
value estimates and exploration of positions with
uncertain value estimates. Kocsis and Szepesvári
(2006) showed that although reward distributions in
game trees are not stationary as in the classic multi-
armed bandit problem, it is possible to apply the
UCB multi-armed bandit strategy in every node, and
achieve convergence to the optimal policy. This vari-
ant of MCTS is called UCT. Other, domain-specific ap-
proaches are described in section 3.3.2.

� Phase two: expansion phase. One or more successors
of sl are appended to the tree. A common expansion
policy in Go is the addition of one newly sampled po-
sition per episode. It is also possible to add several
positions from the episode, or to expand only posi-
tions that have been visited several times.

� Phase three: simulation phase12. According to a simu-

ing players, which allows for maximization at all levels of the tree, or
from the point of view of the same player throughout the tree, which
has to be combined with alternating maximization and minimization.

12No consistent nomenclature for the four phases has emerged in the
literature yet, in particular for the “selection” and “simulation” phases.
In fact, moves are “selected” throughout both phases, and both phases
together constitute one “simulated” game. Also, the term “playout” (or
“rollout”) is used extensively in the literature, referring to either the sim-
ulation phase or selection and simulation phases together. Furthermore,
the term “sampling” has been applied to the selection of moves in both
phases, or in the simulation phase only.

In this thesis, “selection”, “sampling” and “simulation” are used in
their general meaning with respect to all phases of MCTS. When a dis-
tinction between phases is necessary, “selection phase” and “simulation
phase” are used. “Playout” is used synonymously with “simulation
phase”.
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lation policy, moves are played in self-play until the
game is finished. While uniformly random move
choices are sufficient to achieve convergence in the
long run, convergence speed can be improved by us-
ing more sophisticated playout policies (see section
3.4). However, construction of a strong yet unbiased
policy is a difficult task. Addressing this problem is
the aim of this thesis.

� Phase four: backpropagation phase. After the end of
the simulation has been reached and the winner of
the simulated game has been determined, the result
is backpropagated to all nodes traversed during the
playout. Visit counts of these nodes are incremented,
and win counts are incremented for all nodes reached
by the winning player. Value estimates of all involved
positions are thus updated, such that the next simula-
tion can explore improved move choices.

In the selection phase at the beginning of each simulated
game, move decisions are made according to knowledge
collected on-line in the search tree. Beyond the leaves of the
tree, no knowledge about the value of individual positions
is available, so the playout policy is used as a rough ap-
proximation of reasonable play. The agent’s play becomes
stronger as more games are played out, the tree grows, and
move estimates improve. Under certain conditions on the
distribution of rewards, MCTS converges to the optimal
policy (Kocsis and Szepesvári, 2006).

When time runs out or the loop has been repeated suffi-
ciently often, the program returns the best move at the root
as the search result13. Generally, the move with highest visit
count is chosen.

2.7.2 MCTS and Reinforcement Learning

As introduced in section 2.2, the task of learning Go can
be described as a reinforcement learning problem by view-
ing Go positions as states, Go moves as actions, Go rules

13Because the rules of Go are known and deterministic, estimation of
position and move values is equivalent here.
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as defining the transition function, and results of Go games
as rewards for the agent. In this light, Monte Carlo Tree
Search is a value-based reinforcement learning algorithm,
which in combination with a generative model becomes an
on-line planner.

The tree T � S is a subset of the state space, focusing on
the current state and possible successors. After n simulated
episodes of experience—n games—it contains n states, for
which distinct estimates of V � are maintained. For states
outside of the tree, values are not explictly estimated, and
moves are chosen randomly or according to a playout pol-
icy.

From the perspective of generalized policy iteration, the
two interacting processes within MCTS are:

� Policy evaluation: After each episode of experience,
the value estimate of each visited state s 2 T is up-
dated with the return from that episode.

ns  � ns + 1 (2.12a)

V̂ �(s) � V̂ �(s) +
r � V̂ �(s)

ns
(2.12b)

where ns is the number of times state s has been tra-
versed in all episodes so far, and r is the return re-
ceived at the end of the current episode.

� Policy improvement: During each episode, the
agent’s policy adapts to the current value estimates.
In the case the UCB policy is used in the selection
phase, and a uniformly random policy in the simu-
lation phase:

�(s) =

8<
:
argmax
a2A(s)

�
V̂ �
�
Pa(s)

�
+
q

2 ln(ns)
nPa(s)

�
if s 2 T

random(s) otherwise

where Pa(s) is the position reached from position s

with move a, and random(s) chooses one of the ac-
tions available in s with uniform probability.
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Many implementations focus on the estimation of state-
action values instead of state values. The core ideas of the
algorithm remain unchanged. In this case, the policy eval-
uation step for each visited state-action pair (s; a) is:

ns;a  � ns;a + 1 (2.13a)

Q̂�(s; a) � Q̂�(s; a) +
r � Q̂�(s; a)

ns;a
(2.13b)

where ns;a is the total number of times action a has been
chosen from state s; and the policy improvement step is

�(s) =

8<
:
argmax
a2A(s)

�
Q̂�(s; a) +

q
2 ln(ns)
ns;a

�
if s 2 T

random(s) otherwise

if UCB is used for the selection phase and random actions
are chosen in the simulation phase.
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2.7.3 Pseudocode

(Adapted from Chaslot et al. (2007).)

while(hasTime) {
currentNode  rootNode
while (currentNode 2 T ) {

lastNode  currentNode
currentNode  Select(currentNode)

}
lastNode  Expand(lastNode)
R  PlaySimulatedGame(lastNode)
while(currentNode 2 T ) {

currentNode.Backpropagate(R)
currentNode.visitCount  currentNode.visitCount + 1
currentNode  currentNode.parent

}
}
bestMove = Argmax(N 2 Children(rootNode)) N.visitCount
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Chapter 3

Computer Go

This chapter discusses related work in the application field
of Go by first introducing the game and early attempts
at programming Go AI, then describing the rise of Monte
Carlo methods in computer Go, and finally examining pre-
vious approaches for simulation policies in Monte Carlo
Tree Search.

The first section gives an outline of the history, rules, and
basic concepts of Go, as well as the methods for rating play-
ing strength.

3.1 The Game of Go

3.1.1 History

The origins of the game of Go1 are lost in myth. Legends
attribute its invention to the Chinese emperors Yao (2337-
2258 BC) or Shun (2255-2205 BC) as a means of teaching
discipline, concentration and balance to their sons. Other
sources speak of a genesis “more than 2500” or “more than
3000” years ago, connecting Go to rituals of divination and

1The game has spread to the West mainly from Japan and has there-
fore come to be known under its Japanese name Go (or Igo). It is called
Weiqi in Chinese and Baduk in Korean.
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astrology, or to the pieces of stone Chinese generals used to
plan out their campaigns.

The earliest surviving references to Go as a game can be
found in the Chronicle of Zuo, the earliest Chinese histori-
cal annal, in the books of Mencius, and in the Analects of
Confucius, the greatest work of ancient Chinese philoso-
phy. At the time these books were written—in the 3rd-4th
century BC—Go was popular amongst the Chinese aristoc-
racy; along with playing the zither guqin, calligraphy and
painting, it was considered one of the four cultivated arts.
The oldest surviving Go board can be dated to the Western
Han Dynasty (206 BC - 24 AD), while the oldest surviving
text devoted specifically to Go (the Essence of Go by Ban Gu)
originates in the 1st century AD. The rules of Go have re-
mained essentially unchanged since then.

In Japan, Go has been known at least since the early 7th
century AD. One hundred years later, the Japanese ambas-
sador at the Chinese capital of Ch’ang-an, Kibi no Mak-
ibi (695-775 AD), further popularized Go with the Japanese
aristocracy and Imperial Court. The game appears in var-
ious classical works of Japanese literature, including The
Tale of Genji (early 11th century), sometimes considered the
world’s first novel. In 1612, four hereditary Go academies
were founded by the Tokugawa Shogunate: The houses of
Honinbo, Hayashi, Inoue and Yasui. The support of pro-
fessional Go players by the state and the continuing com-
petition of the four houses over the years of the Edo period
(1603-1868) led to the most significant development of the
game’s theory and player skill.

In Europe, Go has been described for the first time in the
essay De Circumveniendi Ludo Chinensium (About the Chi-
nese encircling game) by Thomas Hyde in 1694. However,
it remained relatively unknown, and available descriptions
were mostly incomplete. The German engineer Oscar Ko-
rschelt (1853-1940), who had lived in Japan from 1878 to
1886, published a book on Go at the end of the 19th century,
introducing the game to Germany and Austria. Edward
Lasker (1885-1981), one of the leading chess players of the
time, learned about it in Berlin in 1905 and later co-founded
the New York Go Club, beginning to spread the game in
the US. In the second half of the 20th century, the centuries-
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old Japanese domination in Go was challenged by China
and Korea, and more and more international tournaments
were established. The International Go Federation today
has members in 71 countries all over the world. The game
is believed to be played by 25-100 million people according
to various estimates.

3.1.2 Rules

Various rulesets for Go exist. Their most significant differ-
ences relate to the methods of ending and scoring a game,
the handling of game loops arising from repetition of earlier
positions, and the status of certain rare positions. However,
in practice different rulesets rarely lead to different game
results, and consequences for game strategy are mostly
negligible. The character of the game remains unchanged.

For beginning players, clarity and comprehensibility are
most important; for computers, consistency and ease of
computation are paramount. In order not to obscure the
simplicity and beauty of the basic rules, the Short Rules as
given in Jasiek (2007) are quoted here2. In-depth informa-
tion and discussion on subtle rule nuances can be found in
Jasiek (2010) and Sensei’s (2010).

The game is played on a grid board. Typi-
cally it has 19�19 intersections, but 9�9 are also
fine3. Two players compete. The first player
uses black stones, the other white.

The players alternate. A player may play
or pass. Playing is putting one’s own stone on
an empty intersection and removing any sur-
rounded opposing stones. To avoid cycles, a
play may not recreate any prior configuration
of all stones on the board4.

2They are identical to the rules implemented in the program OREGO,
which is the basis of all algorithms described in this thesis.

39�9 and 13�13 boards are in use for educational purposes and for
quick, informal games. 19�19 is the regular board size treated by Go
literature and used in tournaments.

4The anti-cycle rule is called ko rule in Go, a Japanese word meaning
“eternity” as well as “threat”. Ko fights are an interesting strategic con-
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Two successive passes end the game. Then
the player with more intersections wins. Inter-
sections are his if only his stones occupy or sur-
round them5.
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Figure 3.1: A game position after the first four moves.
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Figure 3.2: A game position after the game has ended.

sequence of it. — Depending on the ruleset, a “configuration” may or
may not include the player to move (situational or positional superko). In
some rulesets, it is forbidden to recreate a position with two successive
plays (simple ko), whereas recreations after more than two moves lead
to the end of the game “without result”.

5This is true for area scoring as used in “Chinese rules”, which are
employed by most computer programs. With territory scoring as used
in “Japanese rules”, the ruleset known to most Western players, in-
tersections occupied by own stones are not added to the score, while
any removed stones of the opponent are added. The difference usually
amounts to no more than one point.
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All rulesets offer a possibility for human players to end the
game as soon as there is agreement about the final outcome.
Thus, it can be avoided to unnecessarily prolong a game.
For computers, on the other hand, it is often difficult to
judge who is ahead in a given position, so games between
computers are usually played out to the end.

3.1.3 Basic Concepts

The black and white pieces that are played on empty in-
tersections of the board are called stones. A set of adja-
cent, connected stones of the same color is called a string,
chain or block (see figure 3.3). Empty intersections adjacent
to a string are called liberties of the string. If a string has
only one liberty left, it is said to be in atari; when it is sur-
rounded, its liberties are reduced to zero and it is captured
by removing it from the board (see figures 3.4, 3.5 and 3.6).
In some rulesets, captured stones of the opponent are kept
as prisoners and influence the scoring. Suicide is the result
of taking the last liberty of your own string; it is allowed or
forbidden depending on the ruleset. In any case, removal
of the opponent’s stones precedes removal of own stones
(see figures 3.7 and 3.8).
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Figure 3.3: A position with five strings: Two white ones and
three black ones.

It is possible to construct a string (or set of strings) that
is immune to capture. For example, suppose a string sur-
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Figure 3.4: The black string is in atari: It has only one liberty
(f3).
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Figure 3.5: If it is Black’s turn in the situation in 3.4, he can
play f3; now his string has three liberties (e3, f2, g3) and
therefore escapes capture.

rounds two separate empty intersections, called eyes, as in
figure 3.9. The opponent would have to play on both of
these intersections to capture the string, but either one of
these moves would be suicidal. Strings that cannot be cap-
tured are called alive; strings that cannot be made alive are
dead. A group is a loosely connected set of stones and/or
strings that act as a functional unit in the game and are con-
sidered effectively connected (see figure 3.10). An essential
part of Go skill is the correct judgement of the life and death
status of a group.
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Figure 3.6: If it is White’s turn in the situation in 3.4, he can
play f3; now the black string is completely surrounded and
is therefore removed from the board.
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Figure 3.7: In this position, White is not allowed to play
d7, as his stone would have no liberties there and would be
instantly captured (suicide).

By making the first move of the game, Black gets a certain
advantage over White. This can be compensated for by
komi, a predetermined number of points added to the white
score after the game has ended. Komi for 19�19 boards
usually varies between 5 and 8 points. Furthermore, Go al-
lows for interesting and challenging matches between play-
ers of different strength by providing an effective handicap
mechanism: Players can agree to place a number of stones
of the weaker player’s color (black) on the board before the
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Figure 3.8: In this position, White is allowed to play d7,
since after the removal of the opponent’s stone e7 the new
white stone d7 would have one liberty (no suicide).
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Figure 3.9: The black string is alive. White cannot play at
either a1 or c1, as both moves would be suicide. So the
black string’s liberties cannot be taken away.

game begins, to compensate for the skill difference6. Fig-
ure 3.11 shows the position before White’s first move in a
19�19 game with four handicap stones.

6In this case, White has the first move, and no komi is used. Giving
Black the first move and using no komi is equivalent to one handicap
stone.
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Figure 3.10: The black stones form a group. They are not
connected yet, but work together to secure the bottom right
corner.
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Figure 3.11: The placement of four handicap stones.
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3.1.4 Ratings

Go players are rated on a scale divided into kyu (beginner),
dan (amateur master) and professional dan ranks7. Beginners
who have just learned the rules of the game are usually
rated around 25 kyu to 30 kyu; from there, they advance
downwards to 1 kyu (abbreviated 1k). If they progress be-
yond that level, they can advance upwards from 1 dan to 7
dan (abbreviated 1d to 7d). To go beyond the 7th amateur
dan, players have to acquire professional status through
one of the major Go organizations in Japan, China, Korea
or Taiwan. Professional rankings are 1 dan through 9 dan
(abbreviated 1p through 9p).

For amateurs, ranks can be determined by the amount
of handicap stones needed to allow an even game be-
tween two players: A difference of one rank corresponds
roughly to one handicap stone. For professionals, ranks are
awarded on the basis of tournament performance. The dif-
ference between two professional dan grades is only about
one third or one fourth of a stone.

With statistical methods and the help of computers, it is
nowadays possible to compute more precise player ratings
on the basis of individual game results, assuming that the
performance of a given player in a given game is a ran-
dom variable from a certain distribution class. With the Elo
scale, originally introduced in chess and used for example
on the Computer Go Server (CGOS) for computer players,
a difference of 100 points between two players predicts that
their win rate will be about 64:36; a difference of 200 points
corresponds to a win rate of about 76:24, etc. (Dailey, 2010)

In computer go, effectively evaluating the playing strength
of a program in reasonable time is an unsolved prob-
lem (see Müller (1991) for some early considerations).
Because different players have different strengths and
weaknesses—this holds for programs as well as for
humans—the only way of establishing a truly reliable rat-

7Kyu and dan ranks have been invented for Go in the Edo period,
but have later also been applied to martial arts like judo and karate, and
even to ikebana and tea ceremony. The well-known black belts of martial
arts indicate dan ranks.
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ing is by playing a large number of games against a variety
of opponents. At least against computer opponents, this
is possible e.g. on the Computer Go Server, but it is pro-
hibitively time-consuming for development and optimiza-
tion purposes. A compromise used for most current Monte-
Carlo based programs and adopted for this thesis is testing
against only one computer opponent: GNUGo (Founda-
tion, 2009). Since GNUGo is a knowledge-based program
with an entirely different architecture from MC programs
(see section 3.2), the risk of overfitting is somewhat low-
ered, and GNUGo plays comparatively fast.

Still, it is difficult to obtain statistically significant results for
a minor algorithm improvement without playing on the or-
der of one thousand games, each taking several minutes up
to several hours depending on the time settings of the MC
program. Some researchers (Takeuchi et al., 2008; Gelly and
Silver, 2007) have therefore taken the approach of super-
vised learning: By using a set of test positions from profes-
sional games and comparing the estimation of a position’s
value by the program (interpreted as a winning probability)
with the real outcome of the game on record. However, to
the author’s knowledge there are no rigorous evaluations
of this measure’s correlation to playing strength8.

The next section turns to the field of AI and gives an
overview of the first four decades of computer Go.

8It is not used in this thesis for three reasons: First, the values com-
puted by Monte Carlo do not have to be close to the “real” winning prob-
abilities against a strong player—they should only be a monotone in-
creasing function of this probability. An algorithm computing values of
0:6 for a winning move and 0:5 for a losing move will fare just as well in
actual play as an algorithm giving values of 0:9 and 0:8 to these moves;
but the error compared to the value on record, 1:0 for the winning move,
is different. Second, it has been reported that training on professional
games leads to weaknesses against amateur players, because refutations
of weak moves cannot be learned (Stern et al., 2006). Positions occurring
in high-level games are not representative of all human Go knowledge,
as the consequences of suboptimal play are not demonstrated. Training
on amateur games however increases noise. Third, training on profes-
sional games obviously does not enable an algorithm to surpass human
capabilities in the long run.
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3.2 Traditional Computer Go

As noted in section 1.2, the classic approach of combining
game tree search with Alpha-Beta pruning and a static eval-
uation function, highly successful in other games like chess
(Campbell et al., 2002), checkers (Schaeffer et al., 1992) and
draughts, connect-four (Baier, 2006), Nine Men’s Morris,
and Othello (Buro, 1998), fails in Go. All of these games
share important properties with Go: They are two-player
games; they are perfect-information games, as no element
of the game state is hidden from the players; they are zero-
sum games, as one player’s loss is the other player’s gain;
they are deterministic games, as there is no element of
chance involved. Still, Go cannot be played effectively us-
ing the same techniques, presumably for two reasons.

First, Alpha-Beta and similar exhaustive search algorithms
cannot deal with the branching factor of Go, i.e. the num-
ber of legal moves from an average game position. While
the branching factor of chess, for example, is around 35, an
average Go position offers circa 300 possible moves, ren-
dering a traversal at even shallow depths virtually impos-
sible. Relatedly, the total number of legal Go positions is
estimated to be around 10170, while there are less than 1050

chess positions9 (Allis, 1994; Tromp and Farnebäck, 2006).
Neither highly efficient pruning techniques like Alpha-Beta
nor constant improvements in computer hardware can al-
leviate the exponential growth of the game tree.

On the other hand, Go on a 9�9 board has a comparable
branching factor to chess, and is just as problematic for
Alpha-Beta (Müller, 2002). The second and probably more
important distinction between Go and other board games
is that despite decades of research efforts, no one has yet
succeeded in creating a fast, accurate evaluation function
for Go. While in chess, for example, the probability of win-
ning from a given position correlates relatively well with
the number and quality of remaining pieces for both play-

9These figures ignore history attributes. Technically, a chess position
includes the information of how many moves have passed since the last
capture or pawn movement (for the 50 moves rule), and a Go position
includes the information about all previous stone arrangements in the
game (for the ko rule).
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ers, Go positions are difficult to decompose into compu-
tationally cheap and meaningful features (Burmeister and
Wiles, 1995). Stones can interact over large distances on the
board and exert influence on events 50 or 100 moves apart.
In order to evaluate a position, the life and death status of
groups, the number and size of ko threats and other fac-
tors have to be taken into account, which themselves re-
quire search and interact in subtle ways that are difficult to
model. Unfortunately, Alpha-Beta depends strongly on ac-
curate evaluation functions—search results can be sensitive
to just a single altered leaf evaluation amongst millions.

3.2.1 Beginnings of Computer Go

The first Go program was written in 1960 (Lefkovitz,
1960), the first computer Go paper appeared in 1963 (Re-
mus, 1962), and the first win against a human beginner—
according to some sources (Burmeister and Wiles, 1997),
the first complete game ever played by a program—was
achieved in 1968 (Zobrist, 1970). Like other early programs,
Zobrist’s algorithm was based on an influence function, ap-
proximating the effect of stones on potential territory by
computing an influence field around every stone that de-
creases with distance. The next step in computer Go was
the attempt to subdivide the board into zones or subgames,
in order to simplify reasoning about them, and to use ab-
stract board representations e.g. on the level of groups (Re-
itman and Wilcox, 1979). Another generation of Go pro-
grams was characterized by introducing patterns to suggest
moves for typical, reoccurring local situations (Boon, 1990).

In the 1980s and 90s, the strongest programs integrated
all of these ideas and many more, experimenting with
various tactical and strategic board representations, local
and global search techniques, evaluation functions based
on functions approximators like artificial neural nets, and
heuristic move generators derived from human knowl-
edge. Programmers tried to model vague human concepts
like connectivity, safety and strength of groups, territory
and influence trade-offs, eyespace or shape, and transform
them into computational ones. Rule-based expert systems
generated moves with corresponding urgency values; goal-
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oriented search with specific evaluation functions was used
to determine the tactical status of strings; pattern and rule
libraries were created by hand or with machine learning ap-
proaches like temporal-difference learning or explanation-
based learning. Algorithms for particular classes of fights,
endgames or ko situations were divised. Expanding or re-
ducing territories, attacking or defending groups and other
subgoals of the game were often handled by a number
of independent submodules, whose results (or lack of re-
sults) then had to be integrated on a global level. Self-play,
supervised learning and evolutionary methods have been
applied to improve game strength. Bouzy and Cazenave
(2001); Müller (2002); Burmeister and Wiles (1997) provide
a survey of the field.

3.2.2 Subproblems of Go

In parallel to working on complete Go-playing programs,
researchers turned to aspects of the game that seemed
amenable to separation and closer analysis. The essen-
tial problem of life and death has been approached by a
large number of search algorithms and static classificators
(Benson, 1976; Wolf, 1994; Chen and Chen, 1999; Kishi-
moto and Müller, 2005). Methods for recognizing safe ter-
ritory have been developed (Müller, 1997; Niu and Müller,
2006b,a). Search for local goals has been refined (Ramon
and Croonenborghs, 2004; Yoshizoe et al., 2007). Con-
necting (Cazenave and Helmstetter, 2005b) and separating
stones (Cazenave, 2006), as well as the problem of seki (mu-
tual life) have been addressed (Niu et al., 2006). Go on vari-
ous small board sizes was solved (van der Werf et al., 2003;
van der Werf and Winands, 2009).

Since Go is a very visual game in which patterns and shapes
play a large role, the theory of mathematical morphology—
used as a tool by the image processing community for the
processing of geometrical structures—has been applied to
Go for territory and influence computations (Bouzy, 2003).
And because Go situations can often be divided into inde-
pendent or almost independent subgames which are seper-
ately solved by human players, combinatorial game theory
(CGT) has been used for the late endgame and a number of
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other situations, with the goal of formalizing Go as a sum
of games (Berlekamp and Wolfe, 1994; Müller, 2003).

3.2.3 Problems of Traditional Computer Go

Although excellent results have been obtained in some sub-
problems, the integration of specific problem solving tools
into complete game-playing programs has proven very dif-
ficult (Bouzy and Cazenave, 2001). Life and death solvers
typically only work for completely surrounded groups;
combinatorial game theory can still only be applied to a
small fraction of Go positions; the assumptions and pre-
conditions of many such methods are rarely met in actual
gameplay, where groups and territories usually have open
boundaries, and subgames interact. In addition, a program
consisting of many interdependent parts is hard to balance,
maintain and extend: Every added piece of knowledge, in-
tended to improve play in one area, can have unforeseen
and unintended consequences in other areas.

Traditional computer Go suffered from the classic knowl-
edge acquisition bottleneck: The playing strength of pro-
grams often depended on the strength of their program-
mers (Burmeister and Wiles, 1997), whose attempts at
understanding their own intuitions through introspection
were of limited success. Rule bases were riddled with ex-
ceptions and exceptions to exceptions. Because the vague
concepts humans use to describe Go can be formalized in
many, idiosyncratic ways, there was little agreement in the
computer Go community about models and algorithms,
and thus progress was slowed.

3.2.4 Strength of Traditional Computer Go

Establishing ratings of knowledge-based computer pro-
grams through games against humans is a problematic
task: Humans are quick at adapting to their opponent and
exploiting its weaknesses, while most traditional Go pro-
grams were not able to learn effectively. Consequently, they
would fall again and again for the same tactics.
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One of the strongest programs of the 1990s, HANDTALK,
was officially awarded a 3 kyu diploma by the Nihon Ki-
in, the largest Japanese Go organization. Another program,
GO++, was estimated to be around 7 kyu. However, these
ratings were very optimistic, and because playing strength
is a brittle quality often determined by the weakest move in
a game, they could rarely sustain a level above 10-15 kyu.
Experienced and observant players could easily find their
weak spots and consequently achieve wins like that of Mar-
tin Müller (5d) against the program MANY FACES OF GO

in 1998—despite the extraordinary number of 29 handicap
stones (Müller, 2002).

In the next section, the second major phase of computer Go
is described—the era of Monte Carlo Tree Search. This in-
troduces the background for my work on MCTS simulation
policies in Go.

3.3 Monte Carlo Go

3.3.1 Beginnings of Monte Carlo Go

As mentioned in section 1.3, Monte Carlo methods—
relying on random sampling and averaging returns—have
traditionally been used in games where hidden informa-
tion or an element of chance make probabilistic estimates a
natural choice. Successful examples include Poker (Billings
et al., 2002), Backgammon (Tesauro and Galperin, 1996),
Scrabble (Sheppard, 2002), Tarok (Luštrek et al., 2003), and
Bridge (Ginsberg, 2001).

The first application of Monte Carlo to deterministic,
perfect-information games has been described in Abram-
son (1990). The proposed expected-outcome model uses the
expected value of a game’s result from a certain position
on, estimated by random sampling, as an evaluation func-
tion for leaf nodes of a traditional Alpha-Beta search tree.
Other than the common handcrafted, ad-hoc evaluation
functions, expected-outcome provides an “elegant, crisply
defined, easily estimable, and above all, domain indepen-
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dent” model of position evaluators according to the author.
Its performance is usually inferior in comparison to fine-
tuned evaluators that incorporate complex expert knowl-
edge; in domains where it is hard to construct an efficient
static evaluator, however, expected-outcome is a worthwile
alternative.

The first Go program employing simulated games was pre-
sented in Brügmann (1993): GOBBLE. GOBBLE estimated
the value of a given move using the All-moves-as-first heuris-
tic (AMAF), averaging the results of all simulated games
in which the move had been played at any time, not only
as first move. In terms of reinforcement learning, the val-
ues of actions were learned independently of state. Then,
the order of all moves in the next playout was determined
by their values and a randomization factor based on sim-
ulated annealing. GOBBLE’s success in finding reasonable
moves without incorporating any domain knowledge was
remarkable, but as no tree structure beyond the first ply10

was used, correct sequences of moves could not be found
by this technique.

10 years later, Monte Carlo Go was taken up again by the re-
search community in Bouzy and Helmstetter (2003), when
improvement of the traditional Go program INDIGO stag-
nated due to the knowledge acquisition bottleneck. The
authors used basic one-ply tree search with Monte Carlo
evaluation of leaf nodes, and experimented unsuccessfully
with the extension to two-ply minimax search. In order to
speed up and focus the search, pruning techniques were in-
troduced to exclude seemingly suboptimal moves from the
search process.

In further work, striving to combine the strengths of ex-
isting Go knowledge and the Monte Carlo approach, a
knowledge-based move generator was proposed to prese-
lect moves for subsequent Monte Carlo evaluation (Bouzy,
2005a). In order to make deeper tree searches possible de-
spite the large branching factor of Go, a minimax algo-

10The term ply, coined in Samuel (1959) and commonly used in re-
search on two-player games, refers to one move by one of the players. It
was introduced to avoid misunderstandings due to the different mean-
ings of the word move, referring to one ply in Go, but to two successive
plies of both players in chess.
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rithm with iterative deepening was developed that pruned
move candidates at every level of the tree (Bouzy, 2004).
For the framework of global tree search with Monte Carlo
evaluation, experiments with different pruning techniques
were conducted (Bouzy, 2006). Other researchers combined
classical, goal-based searches with the new statistical ap-
proaches, by using sampling to determine the subgame that
correlates best with winning the game, and local searches to
choose the appropriate move for the subgame (Cazenave
and Helmstetter, 2005a).

In 2006, Coulom (2006) recognized the main problem of
permanently pruning moves: Due to the uncertainty asso-
ciated with statistical move estimates, good moves are too
frequently excluded from the search process. Building on
search algorithms from the field of Markov decision pro-
cesses, Coulom developed a way of achieving highly se-
lective tree search without permanent exclusion of moves.
Thus, tree search could be combined with Monte Carlo
evaluation while guaranteeing asymptotic convergence to
the optimal move. A similar algorithm was designed by
Kocsis and Szepesvári (2006) and introduced to Go in Gelly
et al. (2006): The UCT algorithm as described in section
2.7.2.

Monte Carlo Tree Search has initiated a revolution in com-
puter Go in recent years. It uses a simple framework and,
in its basic form, little to no domain-specific knowledge,
which makes it easier to develop than traditional programs
(and encourages interested researchers to join the field).
It maintains a global view of the game, without depend-
ing on error-prone subdivision of the board or pruning of
moves. Its playing level increases with additional compu-
tation time, and it is able to present a “best move so far” at
any point—other than knowledge-based programs which
usually only compute one single solution in a fixed period
of time. With respect to Alpha-Beta, Monte Carlo algo-
rithms have the advantages of completely dispensing with
the evaluation function, efficiently focusing the search, and
robustly handling uncertainty.
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3.3.2 Approaches to Monte Carlo Tree Search

The four phases of Monte Carlo Tree Search, as detailed in
section 2.7.1, are selection (move choice within the tree), ex-
pansion (tree growth), simulation (move choice beyond the
tree) and backpropagation (updating of information). Simu-
lation strategies, the focus of this work, are reviewed in de-
tail in section 3.4. This section deals with the approaches to
expansion, backpropagation and selection that have been
used in the literature on MCTS in Go.

Expansion Phase

Expansion deals with the questions: How many nodes
should be appended to the tree after one simulated game,
and under what conditions should nodes be appended?
Since the first papers on MCTS in Go were published, all
strong algorithms have opted to add at most one node per
simulation. Usually, nodes are expanded when they have
been visited a predetermined number of times—at the sec-
ond time in OREGO, the program used in the work at hand.
Some algorithms promote nodes to internal nodes after they
have proven their worth by a larger number of visits; in
internal nodes, more expensive heuristics are applied to
guide search (Chaslot et al., 2007). Examples follow in this
section.

Backpropagation Phase

Backpropagation deals with the question: Which pieces
of information should be extracted from finished playouts
and averaged in visited tree nodes in order to improve their
value estimates? It has been found (Coulom, 2006) that a
simple binary result—win or loss—works better than the
backpropagation of more precise point results like “lost by
2 points”, “won by 7 points” etc. When such win margins
are maximized, Monte Carlo tree search tends to greedi-
ness when in the lead, instead of playing safe and stable.
With binary results, Monte Carlo acts more appropriately
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to its current estimated chance of winning: When behind,
it takes risks, when in the lead, it plays solidly. As a result,
MCTS programs often win by the smallest margin possible,
0:5 points, while they tend to lose overwhelmingly11.

Selection Phase

Selection deals with the question: Which positions in the
tree should be chosen for further sampling, and how is the
value of a move defined? The tradeoff between exploration
and exploitation has to be considered here, as well as the
possibility of generalization in learning and the influence
of offline knowledge.

In Coulom (2006), the proportion of wins to visits—the
winrate—was used as the value of a given move. For ex-
ploration, each move choice in the tree was made according
to a probability distribution over all legal moves, similar to
the Boltzmann distribution (see section 2.1.1).

Gelly et al. (2006) introduced the UCT algorithm to Go,
with an improved UCB bandit for exploration. In addi-
tion to the winrate, the concept of first play urgency was
introduced, which allows UCB to focus on very success-
ful moves without having to try all legal moves first. Also,
experiments with copying value information from “grand-
father” nodes were made, with the assumption that many
move values will not change drastically within two plies.

Coquelin and Munos (2007) presented a new exploratory
policy developed specifically for tree search. Another
multi-armed bandit formula was introduced in Stogin et al.
(2009). In most modern programs, such explicit exploration
policies have been found superfluous, since the RAVE gen-
eralization technique (explained below) provides sufficient
noise (Chaslot et al., 2009).

In Chaslot et al. (2007), domain knowledge was used for
the first time as prior information in the tree nodes. Pat-

11Some researchers have reported a small gain when the binary result
is minimally modified according to the point result. I could not replicate
this behaviour.
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tern values, values for capturing and escaping capture and
values for proximity to previous moves artificially modi-
fied the winrate in inner nodes of the tree, awarding them
for example an extra 50 virtual wins (heuristic bias). This
has the effect of guiding search as long as few “real” sam-
ples are available, but decreasing in importance for well-
explored moves. This heuristic information was also used
to temporarily prune moves that seem inferior, but without
pruning them permanently.

Coulom (2007) used heuristic knowledge in a similar fash-
ion to bias search and to “soft-prune” moves, but expanded
it to a variety of features whose values were learned au-
tomatically with a variant of the Elo model. Features in-
cluded Monte Carlo features, like the attribute of an intersec-
tion of belonging to the opponent in x% of completed simu-
lations. Learning of patterns for the heuristic bias was also
explored in Hoock and Teytaud (2010), utilizing a genetic
programming approach.

A feature-based value function acquired offline by rein-
forcement learning methods was used as prior informa-
tion in Gelly and Silver (2007). Additionally, this paper in-
troduced the most successful generalization technique for
MCTS in Go yet: RAVE (Rapid Action Value Estimation). In
basic MCTS, only the success of simulations with move a

made from the current board s can influence the value esti-
mate for choosing a from s. With RAVE, the success of all
simulations with move a made from any subsequent position
to s is included in the estimate.

Similar to Brügmann’s AMAF, where move values were
computed independent of position, the RAVE technique
defines a neighborhood on positions that share win and
visit counts of their moves. Any position that follows the
current board in a given simulation counts as a neigh-
bor during backpropagation of the return. Helmbold and
Parker-Wood (2009) assessed the performance of several
RAVE variants, with different neighborhood definitions of
varying coarseness.

RAVE estimates can be collected much faster than basic
MCTS estimates—if position s occurs 300 moves before the
end of a simulation, it will receive only one MCTS up-
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date, but 150 RAVE updates in the backpropagation step.
However, RAVE winrates are also considerably noisier than
MCTS data, since they essentially estimate the value of a
move independent of move order in the simulation at hand.
They are discounted accordingly, losing in weight as more
MCTS updates are collected for the move at hand, and ef-
fectively bridge the gap between heuristic estimates and
MCTS estimates.

Because moves with bad value estimates in the current po-
sition can still appear later on in a playout, RAVE values
are continually updated for all moves. They have even
proven a suprisingly effective exploration policy. In many
modern programs, RAVE has therefore replaced UCT-like
confidence intervals (Chaslot et al., 2009; Lee et al., 2009).
Berthier et al. (2010) addresses the problem of restoring
consistency—the property of converging to the optimal
move in the limit—for algorithms with such modified ex-
ploration techniques. A typical policy is:

�(s) =

8>>>><
>>>>:

argmax
a2A(s)

�
Q̂�(s; a) � (1 � cs;a)

+ Q̂�
RAV E(s; a) � cs;a

� if s 2 T

random(s) otherwise
(3.1)

where Q̂�
RAV E(s; a) is the Rapid Action Value Estimate of

choosing a in s, and cs;a is the discounting coefficient. Let
ns;a be the total number of times move a has been played
from position s, and nRAV Es;a the total number of times a has
been played in a simulation after s; then the discounting
coefficient of e.g. OREGO is:

cs;a =
nRAV Es;a

nRAV Es;a + ns;a + nRAV Es;a � ns;a � x
(3.2)

with a weighting factor x 2 R.

Drake and Uurtamo (2007b) examined whether Go knowl-
edge is more effectively applied as heuristic bias, influenc-
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ing value estimates of tree nodes, or as an informed play-
out policy. They found that stronger playout policies have
a greater effect, while also being more time-consuming.

In Pellegrino et al. (2009), it was found that UCT can be im-
proved by an extension to the value formula for an individ-
ual move a. In addition to winrate and confidence interval,
a term for the covariance of playing move a and winning a
simulation was added. However, the results could not be
extended to Go engines with RAVE-type exploration.

3.3.3 Strength of Monte Carlo Go

One additional advantage of Monte Carlo Tree Search that
was not mentioned so far is its relatively easy paralleliza-
tion (Cazenave and Jouandeau, 2007; Chaslot et al., 2008;
Enzenberger and Müller, 2009). Tournament and show
matches have been played on massively parallel hardware.
However, although MCTS scales well with the number
of cores, the additional computational resources make the
limitation of brute force only more apparent: With increas-
ing numbers of simulations per move, programs experi-
ence diminishing improvements in playing strength. Al-
though this has not been researched thoroughly, it is sug-
gested by practical results, e.g. in the scaling studies of
Coulom (2006). It hence appears that selection and sim-
ulation strategies of MCTS algorithms still have to be im-
proved considerably to play on a par with human masters.

From August 26 to October 4, 2008, the MCTS program
MOGO played a number of matches against human players
in an event held at National University of Taiwan, includ-
ing the professional player Jun-Xun Zhou 9p. According
to the player’s comments in subsequent interviews, MOGO

had reached a level of roughly 1p on the 9�9 board, and
2-3d on the 19�19 board. This is an impressive and encour-
aging achievement.

In the next section, previous work on policies for the simu-
lation phase of MCTS is detailed. Improving these policies
is the aim of this thesis.
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3.4 Playout Strategies in Monte Carlo Go

In principle, consistency of Monte Carlo Tree Search—that
is, convergence to the optimal policy in the limit—can be
guaranteed even for truly random playouts, with moves
beyond the tree chosen according to a uniform probability
distribution12 (Kocsis and Szepesvári, 2006). However, con-
vergence can be greatly sped up through the use of more
informed simulation policies, called quasi-random in com-
puter Go. Go knowledge has been used in Monte Carlo
playouts even before the introduction of tree search (Bouzy,
2005a), and the strength of the playout policy has been
shown to generally correlate well with the strength of the
whole MCTS algorithm (Pellegrino and Drake, 2010).

The ongoing efforts to increase the accuracy of playout poli-
cies in order to boost MCTS performance are based on a
convincing intuition: If vanilla MCTS measures a move’s
probability of winning given random play afterwards, then
MCTS with informed playouts estimates a move’s probabil-
ity of winning given reasonable play. Furthermore, stronger
playouts should need fewer samples to find near-optimal
regions of the search space; if we were in possession of a
perfect playout policy, a single sample game would tell us
the optimal next move.

On the other hand, beginning with Bouzy and Chaslot
(2006), it has been repeatedly found that increasing the
strength of a playout policy—measured by its strength as a
standalone player—is not a sufficient condition for stronger
MCTS. Surprisingly, stronger playouts can lead to weaker
Monte Carlo Search and vice versa (see also Gelly and Sil-
ver (2007) for empirical results).

The reasons for this are at least two-fold: First, the stronger
a policy becomes, the more it exploits Go knowledge and
the less it explores the space of all possible games. As Pel-
legrino and Drake (2010) remarks, MCTS with a too deter-
ministic policy does not measure the probability of win-

12The usual exception are moves which would fill one of your own
eyes—these are rarely useful, and since they could lead to the death of
a living group, termination of the playouts in reasonable time could not
be guaranteed. See also 7.2.
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ning, but only the probability of winning given a particular
play style. Second, as suggested in Gelly and Silver (2007)
and theoretically formulated in Silver and Tesauro (2009),
each piece of knowledge incorporated into a playout policy
runs the risk of introducing a certain bias to the distribu-
tion of samples. A policy that is adept at defending groups,
for example, but slightly less skilled in attacking them, will
lead to gross overestimations of the safety of groups. In this
sense, strong MCTS requires a balanced spread of simula-
tions.

In addition, there is a simple tradeoff between strength
and speed of computation: Increasing strength leads to
more meaningful samples, while increasing speed leads to
a greater number of samples and greater statistical confi-
dence in the results.

The next section presents some of the published approaches
to the simulation phase of Monte Carlo Tree Search in Go.
Section 3.4.1 deals with static policies, not depending on the
results of earlier playouts in the search; their move sugges-
tions depend solely on features of the given position. Sec-
tion 3.4.2 covers first attempts at dynamic policies which
improve through online learning.

3.4.1 Static Playout Policies

In the first paper applying MCTS to Go (Coulom, 2006),
playout moves of the program CRAZY STONE were cho-
sen according to their urgencies. Urgency was a numerical
value set to 1 for all moves except for capturing moves and
escape moves (saving a string from capture by the oppo-
nent), which were strongly favored proportionally to the
number of stones they would capture or save. The idea ap-
peared first in Bouzy (2005a). Additionally, various rules
were applied to recognize “useless” moves, i.e. captures
or escapes that would backfire immediately. The numeri-
cal values were arbitrarily chosen and no tuning was per-
formed.

The application of pattern matching in playouts had al-
ready been suggested by Brügmann (1993). In Gelly et al.
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(2006), describing the application of UCT to Go in the
MOGO program, 3�3 intersection patterns inspired by
Bouzy (2005a) were introduced to MCTS. Other than pre-
vious programs, MOGO tried to match its patterns only
around the last-played move on the board instead of glob-
ally; this led to the playing of natural-looking local move
sequences.

The basic MOGO policy �MoGo, which has also become the
default playout policy of OREGO, works as follows: 1. If the
last move of the opponent put any stones in atari, it tries to
save them by capturing or escaping. 2. Otherwise it looks
for matches of a set of 13 common patterns13 around the
last-played move. Each pattern is centered around a move
candidate and specifies the values of the eight surrounding
intersections together with the information of whether the
candidate should be played or not. These patterns have
been hand-coded to represent Go principles like cutting
the opponent’s stones, connecting own stones, and play-
ing hane14. In this way, knowledge about commonly worth-
wile local tactics is introduced to the playouts. 3. If no pat-
tern matches, it looks for capturing moves anywhere on the
board. 4. If no string can be captured, it plays randomly on
a legal intersection.

As Silver and Tesauro (2009) note, this small set of simple
rules and small patterns has remained the basis of most
successful handcrafted playout policies ever since, and
“adding further Go knowledge without breaking MOGO’s
’magic formula’ has proven to be surprisingly difficult”.
However, in the time leading up to the publication of
Chaslot et al. (2009), at least three more heuristics were
added, played in this order between the escape- and
pattern-heuristics described above: 1. The nakade heuris-
tic, trying to play in the center of a three-intersection eye of
the opponent (destroying its potential to become two eyes);
2. the “fill board” heuristic, trying to play on one of a small
number of randomly chosen locations on the board if they
are empty and surrounded only by empty intersections; 3.
the “approach move” heuristic, essentially adding excep-

13They contain don’t-cares which can be resolved into black, white or
empty, so the number of distinct matching 3�3 areas is actually higher.

14“reaching around” an opponent’s stone
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tions to the pattern matching rule.

MANGO, the program of Chaslot et al. (2007), used move
urgencies as the sum of two values: A capture-escape
value similar to the one proposed in Bouzy (2005a) and the
value for the surrounding 3�3 pattern learned in Bouzy
and Chaslot (2006). Additionally, a proximity factor was
used to strongly favor moves adjacent to the last-played
move, achieving a similar effect to local pattern matching
in MOGO.

More handcrafted heuristics were presented in Cazenave
(2007)—a better definition of eye15 and tactics for strings
with two liberties—as well as Drake and Uurtamo
(2007b)—including “fighting” heuristics for strings with
low liberty count.

Bouzy and Chaslot (2006) tried for the first time to auto-
matically optimize urgencies for individual 3�3 patterns by
reinforcement learning methods; for 9�9 Go, a small im-
provement was achieved, but it did not translate to the
larger 19�19 board. The overhead in computation time was
not specified, and it is not clear whether the observed in-
crease in the average point outcome of games actually cor-
responds to a statistically significant increase in the win-
rate.

Another partly successful reinforcement learning approach
was tried in Gelly and Silver (2007). Here, the evaluation
function learned by reinforcement learning methods in Sil-
ver et al. (2007) turned out to make a strong standalone
player, but a weak MCTS policy. It was however success-
fully integrated as a heuristic to bias values of freshly cre-
ated tree nodes, and the apparent paradox of the failure as
Monte Carlo policy ultimately led to the definition of play-
out balance in Silver and Tesauro (2009).

In Coulom (2007), a probability distribution over legal
moves was learned on the basis of considering each move
as a “team” of matching features, and learning the values
of individual features from game databases according to

15with the goal of excluding fewer good moves by never playing in
your own eyes
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the Bradley-Terry model (Hunter, 2004). The Bradley-Terry
model underlies the Elo rating as an estimation of player
strength; it has been generalized to estimate the strength of
individual players from the results of team games. Here,
players were identified with features, while the occurrence
of a move in a professional game was considered a win of
this move’s feature team over all other feature teams on
the board. A subset of the learned feature weights, includ-
ing those for 3�3 patterns, capture, escape, self-atari, and
adjacency to the last-played move, was employed as play-
out policy in the MCTS framework of CRAZY STONE, and
achieved a considerable improvement in playing strength.

Drake and Uurtamo (2007a) considered another way of
combining various heuristics into a playout policy: In order
to avoid the costly computation of all heuristics, a roulette
wheel scheme was employed in which at most one heuristic
is used to choose any given move, determined by random
selection according to learned probabilities.

Finally, the problem of playout imbalance was examined
in Silver and Tesauro (2009), and a a softmax policy
parameterized with the weights of location-dependent
and location-independent patterns was trained to mini-
mize bias through gradient descent reinforcement learn-
ing methods. The results were promising, although exper-
iments have so far only been conducted on 5�5 and 6�6
boards, and in the context of naive one-ply Monte-Carlo
search instead of MCTS.

3.4.2 Dynamic Playout Policies

All policies in section 3.4.1 have been handcoded or learned
offline. In this section, a brief sketch is given of past work
on simulation strategies that use information acquired dur-
ing search.

Judging a move’s potential value partly from its earlier
performance during search—the history heuristic—is a well-
known idea in the field of heuristic search (Schaeffer, 1989).
Br¸gmann’s earliest experiments with Monte Carlo Go,
based on simulated annealing, already featured this aspect,
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albeit not in the sense of a playout policy: The order of all
moves in the next playout was determined before playing,
giving each move a priority depending on the past suc-
cess of playouts containing it (see section 3.3). The idea
was taken up in Bouzy and Helmstetter (2003) and con-
verted into a playout policy that chooses in every position
the move with highest eKv, where v is the move’s current
evaluation (winning rate of playouts containing it) and K

the inverse of the temperature used in simulated annealing.

For Monte Carlo Tree Search, Drake and Uurtamo (2007a)
used a variant of the history heuristic focused on the search
tree. Instead of estimating the value of a move by the win-
rate of all playouts containing it, it was here estimated by
the frequency of being chosen as best move by the tree se-
lection strategy. Also, a second-order history heuristic was
introduced, which kept track not only of frequently cho-
sen moves, but of frequently chosen answers to any given
move of the opponent. When a group is attacked, for ex-
ample, it might be necessary to connect it to another group;
this move, however, is only useful when actually provoked
and does not need to be prioritized otherwise. When the
second-order history heuristic is used, the most frequently
chosen move response to the last-played move of the oppo-
nent is returned.

In Bouzy (2005b), the authors considered the fact that past
playouts contain more information for a player than the fi-
nal outcome “win” or “loss”. The final owner of each in-
tersection of the board is also available—and this informa-
tion can be averaged to determine which parts of the board
are more or less likely to be controlled by the player. The
urgency to play on an intersection can then be adjusted to
be higher for fiercely contested intersections than for areas
whose fate is relatively clear.

This idea was transferred to Monte Carlo Tree Search by
Coulom (2007), where the probability of point ownership
was used as one positional feature for computing the move
probability as described in section 3.4.1. However, the fea-
ture was considered too computationally expensive to in-
clude it in the subset that was implemented as a MCTS
playout policy.
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The concept of criticality, introduced in Coulom (2009), is
a further refined variant of Monte Carlo features: Instead
of measuring how likely a given intersection is to belong
to the player, criticality looks at past playouts to measure
the covariance of owning a given intersection and winning
the playout. This way, one can distinguish between ar-
eas which have unclear point ownership because they will
be divided in a not yet determined way between the two
players—giving no one an advantage in the end—and areas
which have unclear point ownership because they will fall
to a not yet determined player, deciding the game. To my
knowledge, no empirical results have yet been published.

Drake (2010), finally, is the paper whose early versions laid
the foundation for the work described in chapter 6. The
main idea of the last-good-reply policy is closely related to
the second-order history heuristic described above: It is the
idea of remembering your successful answers to the oppo-
nent’s moves in earlier playouts, and repeating them when-
ever the opponent makes the same moves again. For exam-
ple, if connecting my groups successfully defended against
an attack and allowed me to win a playout, then the same
attack should also be answered by connecting in later play-
outs.

However, there are two important differences between
the two heuristics: First, the last-good-reply policy learns
replies from entire playouts, not only from the tree, which
allows quicker learning of more replies with higher ex-
ploratory spread. And second, the last-good-reply policy
only saves the last reply that lead to a won playout—no fre-
quency, no winrate, or any other statistics on the quality of
the move answer. When the last-good-reply player gets to
choose a move, the last-played move of the opponent (say
e4) is looked up in a table, and either the last successful an-
swer to it is returned (say f5), or the move decision is dele-
gated to the uniformly random policy (or, in OREGO, to the
classic MOGO policy as described in section 3.4.1)16.

16Rimmel and Teytaud (2010) is a recent publication that was brought
to my attention shortly before finishing this thesis. While dealing with
the game of Havannah and not Go, its idea of contextual Monte Carlo
is also similar to that of the last-good-reply policy: For every pair of
moves, an average score is being maintained indicating how well the
player fared in playouts where he played both moves. When the policy
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gets to choose a move, the last-played move by the same player is looked
up, and the move that completes the pair with the currently best score is
returned. The use of learning follow-ups to your own moves—instead
of replies to your opponent’s moves—in Go is touched upon in section
6.3.3.





63

Chapter 4

Problem Statement

4.1 Current Deficiencies of MCTS

In the last chapters, Monte Carlo Tree Search has been intro-
duced with an emphasis on its advantages in comparison
to other search- or knowledge-based approaches to com-
puter Go. This chapter briefly outlines unsolved problems
in Monte Carlo Go, followed by a statement of the purpose
of this work.

4.1.1 Handicaps

Move choices of Monte Carlo algorithms are based on sta-
tistical estimates of winning probabilities. For this rea-
son, they rely on the estimates of good and bad moves
being significantly different. If a Monte Carlo program is
extremely behind or extremely ahead in a game, winning
chances of all available moves are so concentrated near 0%
or 100% that it becomes difficult to distinguish good from
bad moves. To the program, it seems as if it would lose or
win anyway, and move choices often start to appear some-
what random to the observer.

In an even game without handicap stones, this is less of a
problem, since e.g. having a very large advantage in an
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even game is likely the result of being a much stronger
player. In this case, the assumption of winning regardless
of precise execution tends to be true. In a handicap game
however, when Black starts with a number of stones al-
ready on the board, the opposite is the case: Black takes the
handicap because it is the weaker player. The impression of
excellent winning chances from the start is wrong here—in
fact, handicap is meant to provide for equal chances. Black
needs to play very carefully and solidly in order to give
White, the stronger player, fewer opportunities to catch up
and overcome the handicap. Careless play resulting from
the belief in a sure win is likely to be punished. An analog
problem exists for a Monte Carlo program playing as White
and giving handicap.

Existing approaches to solving this problem mainly revolve
around the concept of dynamic komi: When Black is given
handicap stones, the outcomes of simulated games are
changed by adding a number of points to White’s score. As
a result, a simulation only counts as won if Black wins by a
large margin. This margin is gradually reduced through-
out the game, so that Black aims eventually aims for a
win in real, unmodified Go. The higher demands on win-
ning the game for Black are intended to counterbalance
the handicap, and achieve a simulation winrate of around
50%. However, the technique has been criticized for trick-
ing Black into taking unnecessarily large risks.

At some point in the future, opponent modelling in Monte
Carlo playouts may be a viable approach to skewed win
distributions. Apart from a first experiment described in
section 7.4, the problem is not adressed further in this work.

4.1.2 Narrow Sequences

The probably most important current issue in computer Go
is the failure of MCTS in most semeai1, as well as many life
and death problems and other situations that require pre-
cise move sequences to be handled correctly. The reason for

1Semeai are mutual capturing races between two enclosed, adjacent
groups of opposing colors, when both groups can only live by capturing
the other group. Fighting semeai is a major part of Go tactics.
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this tactical weakness lies in the exploratory randomness of
simulation policies.

Imagine a fight where the attacking player has a choice be-
tween several threatening moves, but the defending player
needs to choose a single specific reply to each of these
moves to successfully defend. Human players might easily
see these possible defenses and correctly consider the at-
tack futile. The MCTS algorithm however will vastly over-
estimate its chance of succeeding, because it is more likely
to randomly encounter a good attacking move than a good
defending move.

To make things worse, even after the game tree has been
expanded enough to find the correct answers to the at-
tacks, the problem persists by being continually pushed be-
yond the search horizon. Other than humans who can suc-
cessfully generalize from a local solution once it is solved,
MCTS has to find the answers independently in every
branch of the tree. The search will favor any branch where
distractive and ultimately meaningless moves prevent the
tree from examining the attack more closely, because these
branches generate higher reward than the branches where
the futility of attack has already been found. This is can be
considered a new and subtle variation of the horizon problem
known from Alpha-Beta search.

The converse problem arises for the defender, whose simu-
lations return pessimistic results: MCTS will quickly focus
on the first branch where the successful move answers are
found. Other branches may contain even better play, but
are ignored for a long time due to the skewed statistics.

For this reason, the first assumption of this work is that
the horizon problem in Monte Carlo Tree Search should be
solved by creating stronger playout policies. If the distri-
bution of moves in the random simulations could be im-
proved, narrow sequences would be played out correctly in
all branches, and statistical sampling could be used to find
strategically strong moves even in situations with close tac-
tical fights.

Due to the tradeoff between knowledge and exploration
however, as well as the tradeoff between knowledge and



66 4 Problem Statement

speed mentioned in the previous chapter, there are certain
limits to the depth of tactical knowledge that a playout pol-
icy can be equipped with. With the additional risk of bias-
ing simulations—more and more difficult to avoid with in-
creasingly sophisticated policies—the ad-hoc development
of strong playouts has become a “dark art” (Lee et al., 2009).

Therefore, it is the second assumption of this thesis that
future gains in playout strength will be mainly achieved
with dynamic strategies—with policies that autonomously
acquire knowledge during search, adapting themselves to
the current problem.

4.2 Goal of this Work

As discussed in section 3.3, learning in Monte Carlo Go has
until now been generally restricted to the tree, where value
estimates for positions in the agent’s immediate future are
constructed from sample returns and improved with tran-
sient RAVE estimates and heuristic knowledge. In the sim-
ulation phase on the other hand, as shown in section 3.4,
it is still common to rely solely on static knowledge. Play-
out policies are generally handcrafted or acquired offline
through machine learning techniques. The inability to im-
prove simulations while searching leads to systematically
biased estimates in many critical situations, as explained in
section 4.1.2.

Simulated games provide more information than their bi-
nary result: The complete sequence of moves leading to
the result, even if relatively myopic and random as a re-
sult of simple and exploratory policies, can potentially be
input to a learning process. The RAVE technique serves as
a convincing demonstration. It is the goal of this thesis to
utilize this information throughout entire simulated games,
not only in the selection phase, but in particular in the sim-
ulation phase.
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4.2.1 Preliminary Considerations

In the first phase of this work, several objectives for re-
search outcomes were formulated.

� As soon as solutions to subgames or subproblems
on the board are found—such as the correct defense
against an attack move, or a successful way of invad-
ing the opponent’s territory—it would be desirable to
be able to reuse these solutions throughout the rest of
the search process.

� In this way, a solved situation could reduce the statis-
tical variance of simulation outcomes, improving the
signal-to-noise ratio. However, solutions should al-
ways stay “soft”, i.e. the search algorithm must not
apply them unconditionally without allowing for ex-
ceptions or uncertainty, similar to how heuristic esti-
mates or “soft pruning” can be eventually obsoleted
by sample returns (see section 3.3.2).

� The basic MCTS algorithm estimates values of future
moves without generalization over states. To under-
stand narrow sequences as addressed in section 4.1.2,
the search process should be able to acquire knowl-
edge about successful moves, sequences of moves or
whole subtrees of the game tree independent of state.
That way, they could be executed at any suitable time
during a simulation, in both selection and playout
phases2.

� In recognizing and reusing partial strategies, the
search algorithm should adapt to the preconditions
of these strategies, i.e. it should learn the contexts in
which the strategies can be successfully applied. In
other words, complete independence of state should
be automatically replaced by an appropriate general-
ization over states.

� As a long-term goal, it would be ideal if knowledge
about partial strategies could be gathered in such

2The RAVE heuristic is a successful example of learning state-
independent move values. Similarly, it would be desirable to infer the
state-independent values of entire partial strategies.
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a way that statistical consistency guarantees can be
made, and convergence to the optimal policy in the
limit remains undisturbed (Kocsis and Szepesvári,
2006; Berthier et al., 2010).

4.2.2 Move Answers

It is a well-known property of Go that many moves have
correct local replies: They must be answered in a specific
way, regardless of the global situation on the rest of the
board3. In figure 4.1, for example, if White plays at c1, Black
has to play at b1 in order to save his group of stones from
being captured. The same holds for white g9 and black h9
in the mirrored situation at the top.
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Figure 4.1: Local move answers.

Humans understand the (often partial) independence of
such local situations and exploit it by performing local in-
stead of global searches for optimal moves. Basic Monte
Carlo Tree Search, however, does not share any informa-
tion between locally identical board positions: Even after
finding the correct answer black b1 to white c1, any dis-
tracting moves such as white g9, black h9 change the global

3The preference of local over global optimization is natural in many
domains: The optimal action after turning on my computer, for example,
is usually typing in my password. This is independent of other factors
influencing my behavior like the time of day, the weather or even the
program I intend to use.
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position and force MCTS to re-explore the situation at the
bottom from scratch4.

In AI research on chess (cf. Campbell et al. (2002)), the term
forced moves has been coined for such move answers. In
the framework of Alpha-Beta search, they are usually ac-
counted for by increasing the search depth in all branches
where forced moves occur (because they reduce search
width). As for previous work on Go, Cazenave (1998)
proposed a system for automatically generating logic pro-
grams that define forced moves. Although Brügmann
(1993) already suggested maintaining “not just the average
value of each move but the average value after a particular
other move was played first”, no publications on the sub-
ject with respect to Monte Carlo Go seem to exist.

The main idea underlying this thesis is the exploitation of
locally optimal move replies for the goal of creating adap-
tive playout policies. The value of a move depending on
the previous move (or moves) in the simulation is estimated
and used for action selection. In this way, generalization
between states is based on their appearance in move se-
quences. Instead of applying only static knowledge during
playouts, new policies are created that are informed by the
contexts of positions, and by knowledge acquired on-line
about successful actions in these contexts.

4.3 Experimental Framework

All work for this thesis is based on version 6.10 of the
OREGO Go program, provided under the GNU General
Public License by Peter Drake at Lewis & Clark College,
Portland, Oregon (Drake et al., 2009). OREGO features an
MCTS player with RAVE-based selection policy (section
3.3.2) and MOGO-like simulation policy (section 3.4.1). This
basic algorithm achieves a rating of 11 kyu on the KGS Go

4The justification being that in a slightly modified situation, my milk
may be boiling over, making running to the kitchen a superior action
choice over typing my password. As mentioned in section 3.2, cor-
rect judgment on the independence of subgames has been a challenge
in computer Go since the beginning.
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Server and served as the baseline for performance compar-
isons in the following chapters. RAVE was used in all con-
ditions.

Unless stated otherwise, experiments were conducted by
playing a set of games against version 3.8 of GNUGO

(Foundation, 2009). GNUGO was set to its default strength
level of 10. Area counting (“Chinese rules”), positional su-
perko and a komi of 7.5 were used. OREGO and GNUGO

played equal numbers of games as Black and White.

In order to leave optimization and fine-tuning of the
strength-speed tradeoff to further work, most experiments
were not time-controlled, but used the same number of sim-
ulations per move decision in all conditions.

The statistical significance of all results is assessed by two-
tailed z-tests for two proportions. Unfortunately, playing a
sufficient number of games to show significant differences
between conditions is a computationally expensive process.
All experiments with inconclusive results are ongoing.
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Chapter 5

Adaptive Playouts via
Best Replies

This chapter describes the first approach to using move
replies in playout policies—the use of a move value es-
timate that is conditioned on the previous moves in the
game.

5.1 Conditional Value Estimates

In Monte Carlo Tree Search, distinct values of states or
state-action pairs in the immediate future of the agent are
estimated (section 2.7.2). The case of state-action value
estimation is repeated here for convenience. After every
episode of experience s1; a1; s2; a2; : : : ; sT ; r, the estimate of
each state-action pair (st; at) in the search tree is updated
using the return from that episode:

nst;at  � nst;at + 1 (5.1a)

Q̂�(st; at) � Q̂�(st; at) +
1

nst;at

�
r � Q̂�(st; at)

�
(5.1b)

In order to determine optimal move replies for the simula-
tion phase, a separate set of value estimates can be main-
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tained: The expected returns of each possible move when
played as a reply to each possible move of the opponent.
Let P = fWhite;Blackg be the set of players, and pt 2 P

the player to move at timestep t. At the end of an episode,
the following additional update step is performed for each
action at; t � 2:

nat�1;at;pt  � nat�1;at;pt + 1 (5.2a)

V̂ �
reply(at�1; at; pt)  � V̂ �

reply(at�1; at; pt) (5.2b)

+
r � V̂ �

reply(at�1; at; pt)

nat�1;at;pt

where nat�1;at;pt is the number of times move at has been
chosen by player pt directly after move at�1 had been
played by the opponent, and V �

reply : S � S � P 7! R is
defined by:

V �
reply(a; b; p) = E� [Rtjat�1 = a; at = b; pt = p] (5.3)

This way, every move (except the first) is thought of as a re-
ply to the previous move, and its value as reply is estimated
independently of state.

The corresponding policy is improved by

�(st) =

8>>>>><
>>>>>:

argmax
a2A(st)

�
Q̂�(st; a) � ( 1 � cst;a )

+ Q̂�
RAV E(st; a) � cst;a

� if st 2 T

argmax
a2A(st)

�
V̂ �
reply(at�1; a; pt)

�
otherwise

(5.4)

As suggested in Brügmann (1993), “this could be called
the first order approach, and there clearly is a generaliza-
tion to n-th order”. More informative than the value of
move at as a successor to move at�1 (V �

reply(at�1; at; pt)) is
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the value of move at as a reply to moves at�1 and at�2
(V �

reply�2(at�2; at�1; at; pt)). Conditioning on increasingly
longer contexts should result in fewer samples, but also in-
creasingly precise value approximations, since larger parts
of the local1 context are considered. Generalization only
conflates moves in the more distant past.

However, longer contexts pose a computational challenge
in terms of time and space complexity. Concerning space,
maintaining value estimates for all black and white moves
conditioned on all possible three-move histories already re-
quires almost 34 billion floating-point variables, which is
infeasible for current working memory constraints. “In the
limit of large n the complete game information has been
stored and the method becomes equivalent to an exhaus-
tive tree search” (Brügmann, 1993). Concerning time, con-
sidering all possible history lengths of all moves in a simu-
lation is quadratic in the number of moves.

5.2 Move Answer Tree

Two solutions to the complexity problem have been con-
sidered in this work: First, the restriction of the maximal
history length to a predetermined value; second, the use of
a data structure that adapts to the histories actually appear-
ing in simulations.

Only if move at frequently appears in playouts, it is promis-
ing to estimate the value of its successor at+1 conditioned
on at. And only if move at+1 is repeatedly played as a re-
ply to move at, it is worthwile to take both at and at+1 into
account as context for the value estimation of a subsequent
move at+2. By selectively growing a move answer tree into
the direction of actually occurring answers, the playout pol-
icy should be able to focus learning on the most relevant
move sequences for the current search.

This leads to an algorithm maintaining conditional move

1In Go, spatial and temporal locality often coincide. Situations in
parts of the board are played out until sufficiently settled, and the focus
of play changes to another area.
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value estimates in a similar fashion to how MCTS main-
tains value estimates for the moves following the root
state. But while the MCTS tree only grows into the root
state’s future—not generalizing between any two positions
it encounters—the move answer tree would grow into the
future of any state. It is intended to learn optimal sequences
of actions independent of state.

The idea of the move answer tree is treating any two posi-
tions of the game as identical if the previous x moves lead-
ing up to the positions have been identical. Moves to play
in a simulation would be chosen on the basis of value es-
timates conditioned on these x moves. For situations and
move sequences that keep reappearing, x would grow, and
thus the policy would become more precise. More and
more complex partial policies would be represented in the
move answer tree, leaving an increasingly smaller part of
move decisions to random sampling.

5.2.1 Outline of Implementation

The move answer tree has not been fully implemented yet.
While this section proposes its basic workings, the next sec-
tion presents the results of first experiments and explains
the obstacles encountered.

Figure 5.1 shows a toy instance of the tree data structure2.
Depending on technical details such as whether the move
representation of a program includes the player (“White
e6”, “Black q17” etc.) or not (“e6”, “q17”), the move answer
tree can be implemented as a single tree for both players or
as two seperate trees with Black and White to move at the
respective root nodes. In this example, seperate trees are
chosen for clarity. Only one of two move answer trees is
shown: The one with Black to move at the root node.

Thus, the root r represents any game state where it is
Black’s turn. Every branch of the tree represents a move
by one of the players—Black’s moves at the first level of

2Just like the MCTS tree, the tree becomes a directed acyclic graph if
transpositions are accounted for.
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r
black c3: (2/4)
black c4: (2/3)
black d4: (3/5)

n1
white c4: (2/2)
white d4: (0/1)

n4
black d4: (0/1)

white c4

n2
white c3: (0/1)
white d4: (0/1)

n3
white c3: (2/2)
white c4: (0/2)

n5
black c4: (0/1)

n6
black c3: (1/1)

white c3
white c4

black c3
black c4

black d4

Figure 5.1: The move answer tree.

the tree, White’s moves at the second level, and so on alter-
natingly. Every non-root node n stands for the set of game
states whose immediately preceding moves are the moves
on the path from the root to node n. For example, n1 in the
toy example stands for any game state that occurs directly
after the move black c3.

Similar to the action value estimates or state-action value
estimates in the nodes of the regular MCTS tree, move an-
swer tree nodes contain value estimates for the represented
states, or actions following the represented states. In this
example, state-action value estimation is used, so nodes
contain run and win counts for the emanating branches—
the actions made from the represented states. For example,
n1 in the tree above contains the information that white d4
has been played one time from a position reached by black
c3, and that this playout has been eventually lost by white
(0 wins in 1 run). Optionally, additional variables for RAVE
estimates could be included.

From the point of view of generalized policy iteration,
learning in the move answer tree proceeds as follows:

� Policy evaluation: After each episode of experience,
the value estimates of each chosen action are updated
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with the return from that episode. In the regular
MCTS tree this update is limited to a single state-
action value estimate in a single node. In the move
answer tree however, which does not feature a one-to-
one correspondence of states and tree nodes, each ac-
tion can potentially lead to updates for several nodes.

As an example: After the moves black d4 – white c4
– black c3 in a simulation won by Black, the run and
win counts for Black’s move c3 would be updated in
the root node r (where the values of black moves are
estimated independent of context), as well as in node
n6 (where the values of black moves after black d4 –
white c4 are estimated)3. The tree resulting from all
updates is pictured in figure 5.2.

r
black c3: (3/5)
black c4: (2/3)
black d4: (4/6)

n1
white c4: (2/2)
white d4: (0/1)

n4
black d4: (0/1)

white c4

n2
white c3: (0/1)
white d4: (0/1)

n3
white c3: (2/2)
white c4: (0/3)

n5
black c4: (0/1)

n6
black c3: (2/2)

white c3
white c4

black c3
black c4

black d4

Figure 5.2: Updated move answer tree.

New nodes are created whenever the parent node’s
run count exceeds a given value. As an example,
let the threshold value be one. The moves black c4
– white c3 have only been observed once so far, as
recorded in node n2 . If this sequence is played again,
white c3’s run count in n2 is raised to two, which trig-
gers the creation of a new child node of n2. This child
node can store more detailed information about move

3The value of black c3 after white c4 would be updated in a node at
depth one of the other move answer tree, with White to move at the root.
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sequences starting with black c4 – white c3 in the fu-
ture. For the case that the playout containing black c4
– white c3 has been won by White, the result is shown
in figure 5.3.

r
black c3: (3/5)
black c4: (2/4)
black d4: (4/6)

n1
white c4: (2/2)
white d4: (0/1)

n4
black d4: (0/1)

white c4

n2
white c3: (1/2)
white d4: (0/1)

n7
.
.
.

white c3

n3
white c3: (2/2)
white c4: (0/3)

n5
black c4: (0/1)

n6
black c3: (2/2)

white c3
white c4

black c3
black c4

black d4

Figure 5.3: Extended move answer tree.

� Policy improvement: During each episode, the agent
chooses its actions depending on their current value
estimates. Just like there can be several value esti-
mates involved in the update step of a single action,
several estimates may need to be considered to deter-
mine the total value of a legal action during simula-
tion. After the moves black d4 – white c3, for exam-
ple, the total value estimate of the possible next move
c4 by Black can be influenced by the value of c4 inde-
pendent of context (represented in the root node r),
but also by the value of c4 as an answer to white c3
(represented in the the tree not pictured here) and as
an answer to black d4 – white c3 (represented in node
n5).

These values, found at different depths in the tree,
represent differently broad generalizations. Their
combination into a single floating-point figure could
be handled analogously to the combination of MCTS
and RAVE estimates. Shallower contexts would pro-
vide noisier, but more readily available estimates;
they would be discounted as more information for
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deeper contexts arrives. To encourage exploration,
a measure of uncertainty would be added, similar to
the confidence bounds in UCT (section 2.7.1).

In this way, the objectives laid out in chapter 4 could be
addressed: Solutions to subproblems could be stored and
reused while searching—in the form of successful replies to
frequent move sequences. Uncertainty of solutions could
be handled through managing exploration and exploita-
tion with a bandit algorithm, similar to MCTS. All solutions
found would be independent of state and hence applicable
at any time in a simulation; however, they would be de-
pendent on increasingly long move sequences, which could
provide for appropriate generalization.

Two issues are not completely resolved yet: First, the pre-
cise relative weighting of estimates from different tree depths
needs a principled derivation. If RAVE turns out to be suc-
cessful in this context as well, estimates will need to be
weighted across two dimensions of generalization.

Second, due to the fast tree growth it might be advanta-
geous or even necessary to delete and reuse tree nodes while
the tree is being built. It remains to be tested whether this
is done best on the basis of node age, or on the basis of a
more sophisticated measure of the success of a node.

5.3 Preliminary Experiments

Before fleshing out all details of the move answer tree, sev-
eral experiments were conducted to test the viability of the
approach. In these experiments, the tree structure was re-
duced to a single level: Move value estimates were solely
conditioned on one previous move of the opponent, as de-
scribed in equation 5.2. The purpose was to examine the
effect of conditional value estimates in their simplest form.
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5.3.1 Improvement of Local Play

The game position shown in figure 5.4, adapted from
Coulom (2009), was used as a basis for the first two tests.
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Figure 5.4: A position with a local fight.

Key to the outcome of this game is the situation in the top
left corner, where a black group has been surrounded by a
white group. Crucially, Black would have to play on both
b16 and a18 to form two eyes and save his group from being
captured. With competent play by White, he will not be
able to do so, since White can take at least one of the two
intersections even if Black plays first. For this reason, the
black group is dead.

However, White needs to answer Black’s moves correctly:
b16 needs to be answered with a18, and a18 with b16. If
this is not recognized and adhered to during the simula-
tions of Monte Carlo Tree Search, the statistical result will
be skewed in favor of Black’s winning chances, and the po-
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sition will be assessed incorrectly. It is a position in which
local plays, more specifically local move replies, are deci-
sive.

In the first experiment, both the standard MCTS player
of OREGO (referred to as MCTS from here on) and a best-
move-reply player with conditional value estimates accord-
ing to equation 5.2 (henceforth called BMR) ran 25,000 sim-
ulated games on the above position. After every playout,
the eventual owner of every intersection of the board was
stored. If local moves are properly answered, the intersec-
tions of both the black group and the surrounding white
group belong to White at the end of a game; if the cor-
rect move sequences are not played, Black has a chance of
saving his group (and even killing the surrounding white
group). Therefore, the hypothesis is: The percentage of sim-
ulations in which intersections a16, b17, b18, b19, c16, c17,
d17, and d18 (the dead black group) end up belonging to
White should be higher in the BMR condition than in the
MCTS condition, indicating superior local play.

The policy of the BMR player was a modified version of
equation 5.4, intended to increase exploration. It does not
play the highest-valued legal move answer, but tries to play
the highest-valued move answer among all vacant intersec-
tions. If this is illegal, the algorithm falls back to the stan-
dard MOGO policy used by MCTS.

�(st) =

8>>>>>>>>>><
>>>>>>>>>>:

argmax
a2A(st)

�
Q̂�(st; a) � ( 1 � cst;a )

+ Q̂�
RAV E(st; a) � cst;a

� if st 2 T

argmax
a2Avacant(s)

�
V̂ �
reply(at�1; a; pt)

� if argmax
a2Avacant(s)

(: : :)

2 A(st)

�MoGo(st) otherwise
(5.5)

where Avacant(s) is the set of vacant intersections in posi-
tion s. This results in about 76% of playout moves being
chosen for exploitation of value estimates, and 24% for ex-
ploration according to the standard policy.
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The experiment was repeated 100 times for both the MCTS
and the BMR condition.

The results of the first experiment confirmed the hypothe-
sis: The intersections in question fell to White on average
in 58:1% of simulations in the MCTS condition (mean abso-
lute error 2:0%), and on average in 69:2% of simulations in
the BMR condition (mean absolute error 3:2%). Using value
estimates of move replies seems to improve local play.

In the second experiment, the MCTS and BMR players
again ran 25,000 simulations on the above position. This
time, the number of correct move replies to black b16 was
stored; white a18 was counted as correct, any other white
move as incorrect. In order to reduce noise, all simulations
where a17, a18 or a19 had been played before black b16
were discarded. This excludes most exceptions in which
white a18 is not the optimal answer to black b16.

This was, again, repeated 100 times for both the MCTS and
the BMR condition.

The results of the second experiment again suggested a
positive effect of conditional move value estimates: In the
MCTS condition, Black played b16 on average 3498 times
in 25,000 playouts (mean absolute error 667.5), and White
answered correctly in on average 1308 (37:4%, mean abso-
lute error 407.3) of cases. In the BMR condition, Black at-
tempted to save his group on average 7423 times in 25,000
playouts by playing b16 (mean absolute error 3415.2), and
White countered correctly in on average 5298 (71:4%, mean
absolute error 2899.7) of these simulations.

5.3.2 Failure in Game Performance

As shown in the previous experiments, the BMR playout
policy shows promise in the handling of locally correct
move sequences. In the next step, the BMR player’s per-
formance in actual game-playing was tested.

In figure 5.5, the performance of the BMR policy is com-
pared to that of the standard MCTS player of OREGO.
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BMR played 94 games against GNUGO (47 as White, 47 as
Black), and MCTS played 1302 games (651 as White, 651 as
Black) against the same program. OREGO simulated 25,000
games per move.

0 0:1 0:2

BMR

MCTS

Winrate against GNUGO

Figure 5.5: Performance of the BMR policy.

The results show that BMR has a significantly lower win-
rate than plain MCTS (p < 0:001). In fact, BMR has only
been able to win a single game against GNUGO out of 94.

Another variant of the best-move-reply policy, BMR-2, is
based on the idea to give the static MOGO policy priority
over V �

reply value estimates—using escaping, capturing or
pattern moves whenever applicable and thus supporting
search with human knowledge. Only in cases where no
heuristic returns a move and the MOGO policy would re-
sort to random move choice, BMR-2 tries to play the inter-
section with highest reply value estimate. As last fallback,
a move is chosen randomly.

�(st) =

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

argmax
a2A(st)

�
Q̂�(st; a) � ( 1 � cst;a )

+ Q̂�
RAV E(st; a) � cst;a

� if st 2 T

�MoGo(st)
if a capturing, es-
caping or pattern
move is available

argmax
a2Avacant(s)

�
V̂ �
reply(at�1; a; pt)

� if argmax
a2Avacant(s)

(: : :)

2 A(st)

random(st) otherwise

(5.6)
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where random(s) picks any move a 2 A(s) with uniform
probability. This policy is intended to change the balance
between heuristic and acquired knowledge. It results in
only about 21% of playout moves being chosen according
to reply value estimates, in comparison to 76% for BMR as
described above.

In figure 5.6, the performance of the BMR-2 policy is com-
pared to that of the standard MCTS player of OREGO. BMR-
2 played 128 games against GNUGO (64 as White, 64 as
Black), and MCTS played 1302 games (651 as White, 651 as
Black) against the same program. OREGO simulated 25,000
games per move.

0:1 0:15 0:2

BMR-2

MCTS

Winrate against GNUGO

Figure 5.6: Performance of the BMR-2 policy.

Like BMR, BMR-2 performs significantly worse than plain
MCTS (p < 0:001).

Reply value estimates seem to succeed in finding and ex-
ploiting narrow move sequences, but fail in the multitude
of positions arising in real games—including many posi-
tions in which narrow sequences do not play a major role.
It could be speculated that this is a result of the simultane-
ous adaptation of all move answers throughout a playout:
Whenever a given reply shows good results in its context,
the other player is likely to change earlier moves in each
playout, creating a changed context. The estimated returns
may not be able to adapt quickly enough to these changes.

But even if they could be modified to adapt more quickly
by increasing exploration, the risk of getting trapped in lo-
cal optima could only be traded against the risk of never
converging to a meaningful solution. By attempting to op-
timize every move reply throughout a playout, the search
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algorithm is given the task of finding the optimal playout,
essentially the optimal game of Go. This is obviously infea-
sible and does not meet the requirements stated in chapter
4, which asked for partial strategies and solutions to local
problems.

To approach this problem, it may be necessary to introduce
a distinction between replies that actually belong to nar-
row move sequences—that are “forced moves” in a wider
sense— and replies without forcing context, which should
be sampled according to more general heuristics such as
those provided by the MOGO policy. In other words: Con-
ditional value estimates could be used to recognize and ex-
ploit narrow sequences without interfering with the rest of
simulations.

In order to explore this idea, two variants of BMR have
been implemented that employ move replies depending on
their estimated return. If the maximal V̂ �

reply in a given po-
sition is considerably higher than the average V̂ �

reply of all
legal moves (if the best reply stands out), it is considered
a forced move and played with high probability. If how-
ever all moves are valued similarly as reply to the previ-
ous move (if V̂ �

reply does not identify a clear favourite an-
swer), the standard policy is used with high probability in-
stead. In these cases, the policy takes advantage of the cur-
rent position’s features instead of replying to the previous
move. This way, narrow sequences are intended to be dis-
tinguished from regular play.

Formally, in the BMR-P (for probabilistic best-move-reply)
policies the probability of playing the highest-valued move
answer to move at�1 in position st is defined by:

Panswer(at�1; st) =
V̂ �
reply(at�1; a

�; pt)� V
�
reply(at�1; pt)

1� V
�
reply(at�1; pt)

(5.7)
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where

a� = argmax
a2Avacant(st)

V̂ �
reply(at�1; a; pt) (5.8a)

V
�
reply(at�1; pt) =

1

jAvacant(st)j

X
a2Avacant(st)

V̂ �
reply(at�1; a; pt)

(5.8b)

Similar to the BMR policy, the first variant BMR-P gives
V̂ �
reply value estimates priority over the static MOGO policy:

�(st) =

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

argmax
a2A(st)

�
Q̂�(st; a) � ( 1 � cst;a )

+ Q̂�
RAV E(st; a) � cst;a

� if st 2 T

argmax
a2Avacant(s)

�
V̂ �
reply(at�1; a; pt)

� with probability
Panswer(at�1; st)
if argmax

a2Avacant(s)
(: : :)

2 A(st)

�MoGo(st) otherwise
(5.9)

In figure 5.7, the performance of the BMR-P policy is com-
pared to that of the standard MCTS player of OREGO. BMR-
P played 186 games against GNUGO (93 as White, 93 as
Black), and MCTS played 1302 games (651 as White, 651 as
Black) against the same program. OREGO simulated 25,000
games per move.

The winrate of BMR-P could not shown to be significantly
different from that of MCTS.

Analogously to BMR-2, the second variant BMR-P-2 prior-
itizes escape, pattern and capture moves, if available, over
highest-rated move replies:
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Figure 5.7: Performance of the BMR-P policy.

�(st) =

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

argmax
a2A(st)

�
Q̂�(st; a) � ( 1 � cst;a )

+ Q̂�
RAV E(st; a) � cst;a

� if st 2 T

�MoGo(st)
if a capturing, es-
caping or pattern
move is available

argmax
a2Avacant(s)

�
V̂ �
reply(at�1; a; pt)

� with probability
Panswer(at�1; st)
if argmax

a2Avacant(s)
(: : :)

2 A(st)

random(st) otherwise

(5.10)

In figure 5.8, the performance of the BMR-P-2 policy is com-
pared to that of the standard MCTS player of OREGO. BMR-
P-2 played 728 games against GNUGO (364 as White, 364
as Black), and MCTS played 1302 games (651 as White,
651 as Black) against the same program. OREGO simulated
25,000 games per move.

The winrate of BMR-P-2 is significantly lower than that of
MCTS (p < 0:01).

5.3.3 Discussion

No tested variant of move reply value policies has so far
shown promise in preliminary experiments. For this rea-
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Figure 5.8: Performance of the BMR-P-2 policy.

son, work on the move answer tree algorithm has stalled.

Conditional value estimates seem to be a viable way of
finding narrow move sequences and improving local play,
but appear to severely hinder global search at the same
time. In further work, better methods might be found to
seperate these search objectives and divide move choices
more effectively between adaptive, move reply based and
traditional, position feature based sampling techniques.

A first attempt in this direction are the BMR-P policies,
which do perform better than plain BMR—unfortunately,
they are still not superior to the baseline of MCTS+RAVE
with static playouts. Furthermore, it is possible that their
relative success can simply be attributed to a smaller per-
centage of adaptive move choices: BMR chooses ca. 76% of
moves according to learned reply value estimates, BMR-P
only ca. 27%.

The basic idea of BMR-P is the concept of distinguishing
between moves with “forced” answers and moves that can
be “freely” answered in various ways without drastically
lowering winning chances. BMR-P’s simple way of making
this distinction (equation 5.7) could be refined: For exam-
ple on the basis of a statistical measure of relation between
playing a given move reply and winning a simulation. This
would represent an extension of the work of Coulom (2009)
and Pellegrino et al. (2009), who examined measures of re-
lation between playing a standalone move and winning a
simulation.

The tentative goal of this approach is the restriction of best
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move replies to the cases where playing the best reply ac-
tually correlates highly with success in the game4. The next
chapter of this thesis takes a completely different point of
view: Instead of focusing on the question, “Which move re-
ply works best?” it asks “Which move reply worked last?”

4The approach potentially generalizes to other aspects of the game.
As an example, high correlation between winning a simulation and
killing a given group of the opponent could be used as motivation for
playing corresponding attacks with higher probability.
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Chapter 6

Adaptive Playouts via
Last Good Replies

This chapter reports on the second approach to using move
replies in playout policies—the use of last good replies, i.e.
the move replies that have last appeared in a won play-
out. More generally, this chapter deals with simulation al-
gorithms that modify the policy without explicitly estimat-
ing and maximizing values.

The basis for this approach is the last-good-reply policy
(Drake, 2010) as outlined in section 3.4.2. It is therefore pre-
sented in more detail in the first section. The following sec-
tions examine various extensions and variants.

6.1 The Last-Good-Reply Policy

The last-good-reply or LGR policy by Drake chooses a very
different route to adaptive playouts than that described in
the previous chapter. Whenever a player wins a playout,
every move at made after a move at�1 of the opponent
during the simulation is considered a successful answer.
Instead of using a large number of sampled games to esti-
mate reply values by averaging returns, the last-good-reply
policy maintains only one move answer for each opponent
move—the last successful one. In subsequent playouts, this
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move is the first choice to play every time the correspond-
ing move of the opponent appears. If no LGR-1 move is
available, the standard MOGO policy is the fallback.

For updating the LGR policy, the following additional as-
signment step is performed for each action at; t � 2 after a
simulation is completed:

ReplyptLGR(at�1) �

(
at if pt won the playout
ReplyptLGR(at�1) otherwise

(6.1)

where ReplypLGR(a) is the last successful reply of player p
to move a, initialized to a special constant no point before
the start of the search. The policy of Orego becomes

�(st) =

8>>>>>>>><
>>>>>>>>:

argmax
a2A(st)

�
Q̂�(st; a) � (1 � cst;a)

+ Q̂�
RAV E(st; a) � cst;a

� if st 2 T

ReplyptLGR(at�1) if ReplyptLGR(at�1) 2 A(st)

�MoGo(st) otherwise
(6.2)

The last-good-reply-2 policy (LGR-2) naturally extends
LGR to the context of two previous moves: Every move at
is here considered an answer to the player’s own at�2 and
the opponent’s at�1. Whenever ReplypLGR�2 : A � A 7! A

provides no stored answer in the simulation phase, the pol-
icy defaults to LGR-1.

The reply table of LGR-1 contains 2x entries in total, where
x is the number of intersections—361 on the standard
19�19 board. The total amount of memory needed for
LGR-2 is 2(x+ x2) integers (261,364 for 19�19).
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6.1.1 Experimental Results

In figure 6.1, the performance of the LGR-1 and LGR-2 poli-
cies is compared to that of the standard MCTS player of
OREGO. LGR-1 played 1196 games against GNUGO 3.8
(598 as White, 598 as Black), LGR-2 played 636 games (318
as White, 318 as Black), and MCTS played 1302 games (651
as White, 651 as Black) against the same program. OREGO

simulated 25,000 games per move.

0:25 0:3

LGR-2

LGR-1

MCTS

Winrate against GNUGO

Figure 6.1: Performance of the LGR policies.

The results show that LGR-2 has a significantly higher win-
rate than LGR-1 (p < 0:01), while LGR-1 is almost signifi-
cantly stronger than MCTS (p < 0:07). More samples will
here be needed to show a significant difference.

6.2 Forgetting

One drawback of the last-good-reply policy is that move
replies, once stored, cannot be overwritten easily. Only if
a different reply is chosen in a simulated game—either be-
cause the stored reply is illegal in the situation at hand, or
because the move choice is made in the selection phase—
and if the game is also won eventually, will an existing en-
try in the reply table change.

The idea of the last-good-reply policy with forgetting
(LGRF) is to not only attribute success to the move replies
made during a simulation, but also failure. In addition to
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learning that the winner’s replies were good, LGRF learns
that the loser’s replies did not work, and deletes them from
the reply table if present. While policy improvement re-
mains essentially unchanged, the policy evaluation step of
LGRF is for each at; t � 2:

ReplyptLGRF (at�1) �

8>>>>>>>>>><
>>>>>>>>>>:

at
if pt won the
playout

no point

if pt lost the
playout and
ReplyptLGRF (at�1)
= at

ReplyptLGRF (at�1) otherwise

(6.3)

As a result, the contents of the table fluctuate more quickly.
The algorithm increasingly explores alternate replies, and
while suboptimal replies can be forgotten more easily, an-
swers of higher quality still reappear frequently.

Analogously to LGR without forgetting, LGRF can be con-
ditioned on longer lists of previous moves: LGRF-2, LGRF-
3 etc.

The space requirements of LGRF are identical to those of
LGR: 722 integers for LGRF-1, 261,364 for LGRF-2 on the
19�19 board.

6.2.1 Experimental Results

In figure 6.2, the performance of the LGRF-1 and LGRF-
2 policies is compared to that of LGR-1 and LGR-2 as de-
scribed in the previous section. LGRF-1 played 790 games
against GNUGO (395 as White, 395 as Black), LGRF-2
played 756 games (378 as White, 378 as Black), LGR-1
played 1196 games (598 as White, 598 as Black), and LGR-
2 played 636 games (318 as White, 318 as Black). OREGO

simulated 25,000 games per move.

The experiments show the following significant differences:
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Figure 6.2: Performance of the LGRF policies.

LGR-1 < LGR-2 < LGRF-1 < LGRF-2 (p < 0:01). LGR with
forgetting is clearly stronger than without.

Figure 6.3 shows how LGR and LGRF policies scale with
computation time. LGR-1 played 826 games with 10,000
playouts per move, 374 games with 25,000 playouts per
move, and 444 games with 50,000 playouts per move. LGR-
2 played 1248 games with 10,000 playouts per move, 608
games with 25,000 playouts per move, and 708 games with
50,000 playouts per move. LGRF-1 played 554 games with
10,000 playouts per move, 448 games with 25,000 playouts
per move, and 454 games with 50,000 playouts per move.
LGRF-2 played 714 games with 10,000 playouts per move,
1256 games with 25,000 playouts per move, and 316 games
with 50,000 playouts per move. In all conditions, equal
numbers of games were played as Black and White.

The strength relations LGR-1 < LGR-2 < LGRF-1 < LGRF-2
are significant at all tested numbers of playouts (p < 0:01),
except for LGR-1 and LGR-2 at 50,000 playouts which did
not perform significantly different in the experiment1.

1The scaling results shown in figure 6.3 and the following experi-
ments in this thesis show weaker performance than the previous exper-
iments shown in figures 6.1 and 6.2. This is due to a bug in OREGO that
was brought to my attention shortly before the end of my thesis and has
only been removed in figures 6.1 and 6.2 so far. The bug consists in a
missing initialisation of tree nodes. All following experiments will be
repeated; until then, the results up to 6.2 can only be directly compared
to each other, not to those shown in later figures. Relative improvements
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Figure 6.3: Scaling of the LGR and LGRF policies.

The LGRF policy has been described in a paper prepared in
collaboration with the author of OREGO (Baier and Drake,
2010).

as shown by individual experiments should remain untouched by this
problem.
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6.3 Variants

This section presents further experiments with various
forms of learning on the basis of the last-good-reply idea.
None of the following policies make use of the law of large
numbers by averaging simulation returns; instead, they use
single appearances of moves in successful playouts as evi-
dence for their efficacy.

6.3.1 Per-Node LGR

The search tree of OREGO, similar to that of other MCTS-
based programs, grows to tens of thousands of nodes dur-
ing a move search. It spans across very different positions,
and move replies learned in one branch of the tree might
not necessarily be useful in another branch.

The idea of per-node LGR (PNLGR) is the integration of the
reply tables into the tree nodes, such that move answers
can be learned separately for every position added to the
tree. Whenever a new node is added in the expansion phase
of MCTS, move answers are inherited from the mother
node. During the simulation phase, PNLGR only uses
move replies that are stored in the leaf node from which
the playout was started. After a simulation has ended, in-
formation about successful or unsuccessful move replies is
included in the information backpropagated through the
visited nodes in the tree; it is not used to update global re-
ply tables.

Forgetting is implemented in PNLGR. The policy evalua-
tion step used by the policy is, for all positions s in the tree
that the simulation traversed and for all at; t � 2:
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Replypts (at�1) �

8>>>>>>>>>><
>>>>>>>>>>:

at
if pt won the
playout

no point

if pt lost the
playout and
Replypts (at�1)
= at

Replypts (at�1) otherwise

(6.4)

where Replyps(a) is the last successful reply of player p to
move a in a simulation that traversed position s. The policy
improvement step is

�(st) =

8>>>>>>><
>>>>>>>:

argmax
a2A(st)

�
Q̂�(st; a) � (1 � cst;a)

+ Q̂�
RAV E(st; a) � cst;a

� if st 2 T

Replyptsl (at�1) if Replyptsl (at�1) 2 A(st)

�MoGo(st) otherwise
(6.5)

where sl is the last node of the simulation that is contained
in the tree.

PNLGR requires space for 2xnT integers, where nT is the
maximal number of tree nodes—the default in OREGO is
25,000. This amounts to 18,050,000 for the 19�19 board.
Due to memory constraints, PNLGR has not been extended
to two-move contexts.

Experimental Results

In figure 6.4, the PNLGR policy is compared to LGRF-1 as
described in section 6.2. PNLGR played 476 games against
GNUGO (238 as White, 238 as Black), and LGRF-1 played
448 games (224 as White, 224 as Black). OREGO simulated
25,000 games per move.
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Figure 6.4: Performance of the PNLGR policy.

No significant difference between PNLGR and LGRF-1
could be shown.

6.3.2 Pattern LGR

As discussed in section 4.2.2, correct move answers in Go
often depend on their local context on the board. The pre-
vious move is only a small aspect of that context, and a se-
quence of several previous moves is increasingly unlikely
to be concentrated in a small local area.

In Pattern LGR (PLGR), move replies are conditioned not
only on the previous move, but also on the 3�3 intersection
neighborhood of that move on the board. For each such
neighborhood, a distinct reply is stored. Due to data sparse-
ness, regular LGRF is implemented as fallback in case the
pattern around the previous move is not connected to a suc-
cessful answer yet.

PLGR uses forgetting. The policy evaluation step added by
the policy is for all at; t � 2:
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ReplyptN(at�1)
(at�1) �

8>>>>>>>>><
>>>>>>>>>:

at
if pt won the
playout

no point

if pt lost the
playout and
ReplyptN(at�1)

(at�1)
= at

ReplyptN(at�1)
(at�1) otherwise

(6.6)

where N(a) is the 3�3 intersection neighborhood of move
a, and ReplypN (a) is the last successful reply of player p to
move a when N(a) = N . The policy improvement step is

�(st) =

8>>>>>>>>>>><
>>>>>>>>>>>:

argmax
a2A(st)

�
Q̂�(st; a) � (1 � cst;a)

+ Q̂�
RAV E(st; a) � cst;a

� if st 2 T

ReplyptN(at�1)
(at�1) if ReplyptN(at�1)

(at�1) 2 A(st)

ReplyptLGR(at�1) if ReplyptLGR(at�1) 2 A(st)

�MoGo(st) otherwise
(6.7)

PLGR requires space for 2xn3�3 integers, where n3�3 is the
number of possible 3�3 neighborhoods of a given intersec-
tion (7641). For the 19�19 board, that is 5,516,802 integers.

Experimental Results

In figure 6.5, the PLGR policy is compared to LGRF-1 as
described in section 6.2. PLGR played 894 games against
GNUGO (447 as White, 447 as Black), and LGRF-1 played
448 games (224 as White, 224 as Black). OREGO simulated
25,000 games per move.

No significant difference between PLGR and LGRF could
be shown. Even if the slight improvement turns out to be
significant with more samples, it must be noted that the
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Figure 6.5: Performance of the PLGR policy.

PLGR policy is about three times slower than the LGRF pol-
icy.

6.3.3 Last Good Follow-ups

The underlying observation of the last-good-reply policy
is that certain moves are answered almost reflexively by
humans, which makes them relatively independent units
in planning. However, other types of moves are closely
connected as well—for example several moves of the same
player in a planned invasion of the opponent’s territory. No
matter at which precise timing the invasion is started, these
moves will have to be played in the same order in order to
be effective.

The last-good-follow-up policy (LGF) conditions moves at
not only on previous moves at�1 by the opponent, but also
on previous moves at�2 by the same player. By storing
moves that were successful follow-ups to other moves in
past simulations, a player is enabled to stick to a partial
strategy without being distracted by possibly ineffective
replies by the opponent. Follow-ups are played as fallback
when no replies are stored.

LGF uses forgetting. The policy evaluation step added by
the policy is for all at; t � 2:
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FollowupptLGF (at�2) �

8>>>>>>>>><
>>>>>>>>>:

at
if pt won the
playout

no point

if pt lost the
playout and
FollowupptLGF (at�2)
= at

FollowupptLGF (at�2) otherwise
(6.8)

where FollowuppLGF (a) is the last successful follow-up of
player p to move a. The policy improvement step is

�(st) =

8>>>>>>>>>>><
>>>>>>>>>>>:

argmax
a2A(st)

�
Q̂�(st; a) � (1 � cst;a)

+ Q̂�
RAV E(st; a) � cst;a

� if st 2 T

ReplyptLGR(at�1) if ReplyptLGR(at�1) 2 A(st)

FollowupptLGF (at�2) if FollowupptLGF (at�2) 2 A(st)

�MoGo(st) otherwise
(6.9)

LGF requires space for 2 � 2x entries in total, where x is the
number of intersections—half of that for replies, and half
for follow-ups.

Experimental Results

In figure 6.6, the LGF policy is compared to LGRF-1 as
described in section 6.2. LGF played 362 games against
GNUGO (181 as White, 181 as Black), and LGRF-1 played
448 games (224 as White, 224 as Black). OREGO simulated
25,000 games per move.

No significant difference between LGF and LGRF could be
shown.
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Figure 6.6: Performance of the LGF policy.

6.3.4 Indirect LGR

The idea of the successful Rapid Action Value Estimation
technique (section 3.3.2) is that the value of playing a move
from a given position can be approximated by the value of
playing the move at any time after that position. The last-
good-reply simulation policy, however, only stores actual
direct replies.

The indirect last-good-reply policy (ILGR) extends LGR to
moves played in a window of fixed length after a given op-
ponent move. It stores any move at in a won playout not
only as a (direct) reply to move at�1, but also as an (indi-
rect) reply to moves at�3 and at�5 by the opponent2. When
simulating a game, direct answers are tried first; if illegal,
indirect answers are tried.

When a simulation is lost,

� ILGR-a deletes all moves at as direct or indirect move
reply to at�1

� ILGR-b deletes at as a direct or indirect reply to at�1,
at�3 and at�5

The policy evaluation step added by ILGR for playouts
won by pt is for all at; t � 2:

8i 2 f1; 2; 3g : Replypti (at�(2i+1)) � at (6.10)

2The number of three previous moves was chosen arbitrarily.
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where Replypi (a) is the ith reply of player p to move a. For
playouts lost by pt, the following step is added by ILGR-a
for all i 2 f1; 2; 3g and for all at; t � 2:

Replypti (at�1) � no point if Replypti (at�1) = at (6.11)

while ILGR-b instead adds, for all i 2 f1; 2; 3g and for all
j 2 f1; 3; 5g and for all at; t � 2:

Replypti (at�j) � no point if Replypti (at�j) = at (6.12)

The policy improvement step of both policies is

�(st) =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

argmax
a2A(st)

�
Q̂�(st; a) � (1 � cst;a)

+ Q̂�
RAV E(st; a) � cst;a

� if st 2 T

Replypt1 (at�1) if Replypt1 (at�1) 2 A(st)

Replypt2 (at�1) if Replypt2 (at�1) 2 A(st)

Replypt3 (at�1) if Replypt3 (at�1) 2 A(st)

�MoGo(st) otherwise
(6.13)

ILGR in this form requires space for 3 � 2x entries in total—
for each player, three sets of answers to every intersection
on the board.

Experimental Results

In figure 6.7, the ILGR policies are compared to LGRF-1 as
described in section 6.2. ILGR-a played 540 games against
GNUGO (270 as White, 270 as Black), ILGR-b played 282
games (141 as White, 141 as Black), and LGRF-1 played
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Figure 6.7: Performance of the ILGR policies.

448 games (224 as White, 224 as Black). OREGO simulated
25,000 games per move.

Both ILGR-a and ILGR-b perform significantly worse than
LGRF-1 (p < 0:001).

6.3.5 Multiple Reply LGR

The last-good-reply policy stores only one reply to any
given opponent move. If this move gets deleted after a lost
simulation, or if it is just illegal in a playout situation, no
good reply is available anymore, and the policy falls back
to the classic MOGO policy. In this section, all experiments
are based on the idea of storing several successful move
replies to one opponent move.

Multiple Replies sorted by Age

The MLGR-A policy stores successful moves and deletes
unsuccessful moves at conditioned on the previous two
moves at�1 and at�2, similar to LGR-2. Other than LGR-
2, it provides a variable number of reply slots per context
instead of just one.

When a move reply at is made in a won playout, but a reply
to at�1 is already stored, LGR overwrites the old reply with
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the new one. The intuition behind this is improvement—
the new reply is probably going to be more relevant in fu-
ture playouts than the old one. However, if the new entry is
deleted at some point, it would be desirable to know which
other candidate replies already had at least one successful
trial—instead of starting exploration from scratch, the old
entry could be reused.

In MLGR-A, a predetermined number of reply slots per op-
ponent move is maintained. New successful replies fill up
empty slots; when all slots are full, the oldest entry is re-
placed. Unsuccessful replies are deleted, allowing older
replies to advance in rank and be chosen again. The same
holds for answers to two-move contexts.

As for the simulation phase, a new question arises: It is
known from experiments with LGR-1 and LGR-2 that an
answer conditioned on two moves (at�1 and at�2) should
be preferred to an answer conditioned on just one move
(at�1). But when old replies are available, is even an old
two-move answer more useful than a new one-move an-
swer? In other words, does age matter more than context
length?

In order to test this, three different simulation strategies
have been implemented for MLGR-A.

� In MLGR-A-a, only the youngest available replies are
played. The order of priority is: Youngest two-move
answer ! youngest one-move answer ! fallback to
MOGO policy. Older replies only serve as backups for
the case the younger ones fail in a later playout.

� In MLGR-A-b, older replies are tried as well, but
context is given priority over age. The ranking is:
Two-move answers, from youngest to oldest ! one-
move answers, from youngest to oldest! fallback to
MOGO policy.

� In MLGR-A-c, age is given priority over context. The
ranking is: Youngest answers, from two-move to one-
move context ! oldest answers, from two-move to
one-move context! fallback to MOGO policy.
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MLGR-A requires space for 2xnslots entries in total, where
nslots is the number of stored replies per opponent move.

Experimental Results

In figure 6.8, the MLGR-A policies are compared to LGRF-
2 as described in section 6.2. MLGR-A-a with two replies
per context played 666 games against GNUGO (333 as
White, 333 as Black), MLGR-A-b with two replies per con-
text played 606 games (303 as White, 303 as Black), MLGR-
A-c with two replies per context played 450 games (225 as
White, 225 as Black), MLGR-A-c with three replies per con-
text played 348 games (174 as White, 174 as Black), and
LGRF-2 played 1256 games (628 as White, 628 as Black).
OREGO simulated 25,000 games per move.

0:2 0:3 0:4

MLGR-A-c(3)

MLGR-A-c(2)

MLGR-A-b

MLGR-A-a

LGRF-2

Winrate against GNUGO

Figure 6.8: Performance of the MLGR-A policies.

MLGR-A-b (p < 0:05) and MLGR-A-c (p < 0:01 for two
replies per context, p < 0:001 for three replies per context)
are significantly weaker than LGRF-2. MLGR-A-a could
not shown to be significantly different in strength from
LGRF-2.
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Multiple Replies Unsorted

MLGR-A, as defined in the previous section, stores several
replies per context. These replies can be distinguished by
their age, as newer ones are always ranked ahead of older
ones. The MLGR-U policy stores several replies without
any ranking or sorting: Winning replies are saved, losing
replies are deleted, and whenever the policy is called for a
move choice, one of the available replies is picked at ran-
dom.

Only one-move contexts have been implemented in MLGR-
U so far. Two variants have been compared that differ in
their handling of replacement: Whenever a new successful
move reply arrives, but the corresponding reply slots are
already filled,

� MLGR-U-a discards the arrival and uses the old
replies until forgetting frees up slots;

� MLGR-U-b randomly picks one of the old replies and
overwrites it with the new one.

The space requirements of MLGR-U are identical to those
of MLGR-A.

Experimental Results

In figure 6.9, the MLGR-U policies are compared to LGRF-1
as described in section 6.2. MLGR-U-a played 472 games
against GNUGO (236 as White, 236 as Black), MLGR-U-b
played 478 games against GNUGO (239 as White, 239 as
Black), and LGRF-1 played 448 games (224 as White, 224 as
Black). OREGO simulated 25,000 games per move.

Both MLGR-U-a and MLGR-U-b perform significantly
worse than LGRF-1 (p < 0:001).
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Figure 6.9: Performance of the MLGR-U policies.

6.3.6 Decaying LGR

Experiments with forgetting suggest that fluctuation has a
positive effect on LGR. Newer replies seem to be more valu-
able than older ones, and holding on to outdated informa-
tion seems to decrease playout quality.

LGRF, however, offers only two ways to replacing old
replies: Deletion after a lost playout, or replacement after
a won playout that offers a new response in the respective
context. The last-good-reply policies with forgetting and
decaying (LGRF-D) seek to answer the question: Should a
move reply also be forgotten on the grounds that it is sim-
ply old, i.e. that it has not been tried for a longer period of
time and is therefore less likely to be applicable anymore?

Two variants have been implemented. LGRF-2-D-a uses
only move replies found in the last won playout; all stored
replies stem from the same simulation. This reduces the av-
erage number of available replies, but could also improve
their compatibility—it is not obvious that move replies
from a number of different simulations can work when ap-
plied together.

The second variant, LGRF-2-D-b, stores move replies for
only two simulations and forgets them afterwards. If the
last two simulations were won by the same player, answers
from both are available to him; if the last two simulations
were lost, the reply table is cleared completely. Assuming
that the search has now switched to another branch, replies
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have to be relearned3.

The policy evaluation step of both LGRF-2-D policies is
identical to that of LGRF-2. Additionally, a playout counter
is maintained throughout the search, and creation dates are
stored with every move answer. During sampling, only
replies created at the last won playout or at most two play-
outs ago, respectively, are considered.

LGRF-2-D needs the same amount of space as regular
LGRF-2 (261,364 integers for the 19�19 board).

Experimental Results

In figure 6.10, the LGRF-2-D policies are compared to
LGRF-2 as described in section 6.2. LGRF-2-D-a played 302
games against GNUGO (151 as White, 151 as Black), LGRF-
2-D-b played 340 games (170 as White, 170 as Black), and
LGRF-2 played 1256 games (628 as White, 628 as Black).
OREGO simulated 25,000 games per move.
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LGRF-2-D-b

LGRF-2-D-a

LGRF-2
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Figure 6.10: Performance of the LGRF-2-D policies.

Both LGRF-2-D-a and LGRF-2-D-b perform significantly
worse than LGRF-2 (p < 0:001).

3The number of two simulations was chosen arbitrarily.
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6.3.7 Last Bad Replies

The last-good-reply policy stores information about suc-
cessful move answers. These answers are preferred in sub-
sequent playouts. Forgetting allows for the deletion of such
preference when a stored move answer fails. However,
there is no opposite to preference—no mechanism for stor-
ing information about failed move replies in order to avoid
them in the future.

The last-bad-reply policy (LBR) maintains, in addition to
the last-good-reply table, a table for the last move replies
that appeared in a lost playout. When a move at has to be
chosen, the last good reply to at�1 is tried first, if available;
if it does not exist or cannot be played, the MOGO policy is
used as fallback—but the last bad reply to at�1 is excluded
from the move choice. Last bad replies are never deleted,
but quickly overwritten as soon as a playout is lost despite
having used a different move in the corresponding context.

LBR-2 provides both last-good-reply tables of LGRF-2, and
additionally two last-bad-reply tables, with unsuccessful
move answers conditioned on one or two moves, respec-
tively.

The policy evaluation step added by LBR-1 is for all at; t �
2:

ReplyptLBR(at�1) �

8<
:
at

if pt lost the play-
out

ReplyptLBR(at�1) otherwise
(6.14)

where ReplypLBR(a) is the last reply of player p to move a

in a playout that was eventually lost by p. Policy improve-
ment with LBR-1 combines LGR and LBR information as
follows:
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�(st) =

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

argmax
a2A(st)

�
Q̂�(st; a) � (1 � cst;a)

+ Q̂�
RAV E(st; a) � cst;a

� if st 2 T

ReplyptLGR(at�1)
if ReplyptLGR(at�1) 2
A(st)nReply

pt
LBR(at�1)

�MoGo

�
st; A(st)nReply

pt
LBR(at�1)

�
if available

random(st) otherwise

(6.15)

where �MoGo(s;X) are the three heuristics of the MOGO

policy, restricted to the moves in set X .

LBR-1 requires space for 2 �2x entries in total, where x is the
number of intersections—half of that for good, and half for
bad replies. LBR-2 needs 4(x + x2) integers, consequently
(522,728 for the 19�19 board).

Experimental Results

In figure 6.11, the LBR-2 policy is compared to LGRF-2 as
described in section 6.2. LBR-2 played 500 games against
GNUGO (250 as White, 250 as Black), and LGRF-2 played
1256 games (628 as White, 628 as Black). OREGO simulated
25,000 games per move.

0:38 0:4 0:42 0:44 0:46

LBR-2

LGRF-2

Winrate against GNUGO

Figure 6.11: Performance of the LBR-2 policy.

LBR-2 performs significantly worse than LGRF-2 (p <
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0:01).

6.3.8 LGR Priority

While LGR presents knowledge specific to the current
situation—move replies that have been successfully used in
the current search—it generalizes relatively strongly. Basic
LGR-1 equates all positions st with equal at�1, and com-
plex features of the position itself, such as whether a group
is in atari, are only considered by the MOGO fallback policy
if no last good move is available. However, a group being
in danger seems to be far more informative than a single
move being played by the opponent.

The experiment presented in this section represents a test
whether reacting to the last move of the opponent should
actually be ranked as first or as second priority. Contender
for first priority is the most important heuristic of the classic
MOGO policy—moves that avoid capture.

The escape-before-last-good-reply policy with forgetting
(ELGRF) first tries to escape, if any group is in atari; if not,
tries to play a stored move reply; if unavailable, tries to
match a local pattern; if no pattern matches, tries to cap-
ture a group of the opponent and finally, makes a random
move if nothing else was viable.

Space requirements of LGR remain unchanged.

Experimental Results

In figure 6.12, the ELGRF-2 policy is compared to LGRF-
2 as described in section 6.2. ELGRF-2 played 236 games
against GNUGO (118 as White, 118 as Black), and LGRF-
2 played 1256 games (628 as White, 628 as Black). OREGO

simulated 25,000 games per move.

ELGRF-2 performs significantly worse than LGRF-2 (p <

0:01).
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Figure 6.12: Performance of the ELGRF-2 policy.

6.3.9 Ignoring the Tails of Playouts

As mentioned in section 2.4, Monte Carlo estimates have
very high variance. The success of a simulation depends
on many move choices by both players—more than 400 on
average—and the further down the tree these choices are
made, the less informed they are. The majority of moves is
chosen relatively random in the playout phase beyond the
tree.

Regarding RAVE estimates that depend on all moves in a
simulation, some researchers have therefore experimented
with ignoring the tails of playouts (the last 30% to 50% of
moves) during learning. The intuition is that these late
moves are too far removed from reasonable play and in-
troduce too much noise.

In the following experiment, it was explored whether the
acquisition of move replies by LGRF should also be re-
stricted to the first part of simulations, before too much
noise accumulates through suboptimal moves. This first
part was arbitrarily chosen to extend 200 moves starting
from the root position. The LGRF-2 policy was modified
accordingly, resulting in the LGRF-MAX200 policy.

The policy evaluation step of LGRF-MAX200 is identical to
that of LGRF-2, but only executed for all at; 2 � t � 200.

Space requirements of LGR remain unchanged.



6.3 Variants 113

Experimental Results

In figure 6.13, the LGRF-MAX200 policy is compared to
LGRF-2 as described in section 6.2. LGRF-MAX200 played
482 games against GNUGO (241 as White, 241 as Black),
and LGRF-2 played 1256 games (628 as White, 628 as
Black). OREGO simulated 25,000 games per move.
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LGRF-2

Winrate against GNUGO

Figure 6.13: Performance of the LGRF-MAX200 policy.

LGRF-MAX200 performs significantly worse than LGRF-2
(p < 0:01).

6.3.10 Ignoring Captured Stones

During simulated games, many seemingly poor and mean-
ingless moves are made by the simple playout policies. It
would be desirable to restrict LGR learning to move replies
that not only appear in good games—good enough to be
won eventually—but are actually good moves themselves.

A naive definition of “good move” is: A good move is a
move that remains on the board until the end of the game,
a stone the opponent is not able to capture. In games
between humans, this is obviously not true—stones and
whole groups are regularly traded or sacrificed for territory
in other parts of the board, and stones without a chance of
survival can still have significant influence on the game. In
the case of a playout policy, however, many stones are cap-
tured eventually because they were poorly played.

In the following experiment, the last-good-reply policy
with forgetting for surviving stones (LGRF-2-S) is a mod-
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ification of LGRF-2 which only stores surviving replies,
stones that were still on the board when the simulation had
ended4.

Space requirements of LGR remain unchanged.

Experimental Results

In figure 6.14, the LGRF-2-S policy is compared to LGRF-
2 as described in section 6.2. LGRF-2-S played 438 games
against GNUGO (219 as White, 219 as Black), and LGRF-
2 played 1256 games (628 as White, 628 as Black). OREGO

simulated 25,000 games per move.
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Figure 6.14: Performance of the LGRF-2-S policy.

LGRF-2-S performs significantly worse than LGRF-2 (p <

0:01).

6.3.11 Last Good Moves

LGR-2 returns moves conditioned on two previous moves,
at�2 and at�1; LGR-1 returns moves conditioned on one
previous move, at�1. Instead of falling back to the static
MOGO policy in the case no suitable reply is available,
good replies conditioned on zero moves could be learned—
or in other words, good moves.

The last-good-move policy (LGM) is related to what
Brügmann called the “zeroth-order approach” (Brügmann,

4For the sake of simplicity, this does not detect stones that were cap-
tured mid-game, but played again later.
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1993), the estimation of move values independent of con-
text. LGM instead stores a single boolean value for every
intersection and for every player: GoodmovepLGM (a) is ini-
tialized to false, set to true whenever move a by player
p is part of a won simulation, and set to false again when
player p made move a in a simulation he eventually lost.
The corresponding policy evaluation step is for all at:

GoodmoveptLGM (at) �

8><
>:
true

if pt won the
playout

false otherwise
(6.16)

Two versions of LGM have been implemented, both com-
bining zero-, one-, and two-move contexts.

� LGM-2-a tries two-move replies first when sampling.
If unavailable or illegal, the policy falls back to
replies with one-move context; and if these are not
usable as well, a random move a is played such
that GoodmovepLGM (a) = true. Last fallback is the
MOGO policy.

� LGM-2-b uses two-move and one-move replies as
first and second priority; afterwards, the policy looks
for escaping moves, matching patterns or captures as
in the MOGO policy (see section 3.4.1); and if still no
move has been selected, a random “good move” is
chosen. Last fallback is a uniformly random move
choice.

LGM-2 requires space for 261,364 integers (identical to
LGR-2) and for 722 booleans.

Experimental Results

In figure 6.15, the LGM-2 policies are compared to LGRF-
2 as described in section 6.2. LGM-2-a played 296 games
against GNUGO (148 as White, 148 as Black), LGM-2-b
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played 394 games (197 as White, 197 as Black), and LGRF-
2 played 746 games (373 as White, 373 as Black). OREGO

simulated 45,700 games per move.
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Figure 6.15: Performance of the MLGR-U policies.

While LGM-2-a performs significantly worse than LGRF-2
(p < 0:001), no significant difference between LGM-2-b and
LGRF-2 could be shown.

6.3.12 Local LGR

A large part of the success of the well-known MOGO policy
has been attributed to its local pattern matching, which cre-
ates sequences of moves resembling (short-sighted) human
play (Gelly et al., 2006; Wang and Gelly, 2007). Although
similar patterns had been used before, the surprising con-
tribution of MOGO in this regard was the superiority of
local matching over global matching. Small patterns like
MOGO’s create more meaningful play when only applied
in the 3�3 neighborhood of the last move, than when used
on the entire board.

In this section, this locality effect is examined in the con-
text of the last-good-reply and the last-good-move policies.
All experiments are based on the so-called knight’s neigh-
borhood, named after the area covered by the legal moves
of the knight piece in chess. Figure 6.16 shows the knight’s
neighborhood of a black stone on e5.

The following variants of LGRF and LGM have been imple-
mented:
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Figure 6.16: The knight’s neighborhood of e5.

� LGRF-2-L-a is a local variant of LGRF-2. It only stores
successful move replies at if they are played in the
knight’s neighborhood of the previous move at�1.
Two-move replies are only stored if at�2 and at�1 are
in each other’s neighborhood, and at�1 and at are in
each other’s neighborhood. If no local reply is avail-
able, the policy falls back to the MOGO policy.

� LGRF-2-L-b combines LGRF-2-L-a with LGRF-2 by
maintaining both local and global reply tables. If no
reply in the knight’s neighborhood is available, it falls
back to replies on the entire board; only as third pri-
ority, it falls back to the MOGO policy.

� LGM-2-L-a is a local variant of LGM-2-a. Like LGM-
2-a, it gives “good moves” priority over the MOGO

policy, but only searches the knight’s neighborhood
of at�1 for “good moves”.

� LGM-2-L-b is a local version of LGM-2-b. Like LGM-
2-b, it gives escape, pattern and capture moves prior-
ity over “good moves”, and uses uniformly random
moves as last fallback; like LGM-2-L-a, it only uses
“good moves” near the last move of the opponent.

LGRF-2-L-a has the same space requirements as LGRF-2
(261,364 integers for the 19�19 board). LRGF-2-L-b needs
twice as much space. The LGM-2-L variants require the
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same amount of space as LGM-2 (261,364 integers and 722
booleans).

Experimental Results

In figure 6.17, the LGRF-2-L policies are compared to
LGRF-2 as described in section 6.2. LGRF-2-L-a played
228 games against GNUGO (114 as White, 114 as Black),
LGRF-2-L-b played 888 games (444 as White, 444 as Black),
and LGRF-2 played 746 games (373 as White, 373 as Black).
OREGO simulated 45,700 games per move.
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Figure 6.17: Performance of the LGRF-2-L policies.

While no significant difference between LGRF-2-L-b and
LRGF-2 could be shown, LGRF-2-L-a performs signifi-
cantly worse than LGRF-2 (p < 0:001).

In figure 6.18, the LGM-2-L policies are compared to LGRF-
2 as described in section 6.2. LGM-2-L-a played 618 games
against GNUGO (309 as White, 309 as Black), LGM-2-L-b
played 1184 games (592 as White, 592 as Black), and LGRF-
2 played 746 games (373 as White, 373 as Black). OREGO

simulated 45,700 games per move.

LGM-2-L-a performed significantly worse than LGRF-2
(p < 0:001). No significant difference between LGM-2-L-
b and LGRF-2 could be shown.
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Figure 6.18: Performance of the LGM-2-L policies.

6.3.13 Scoring LGR

While chapter 5 considered the use of move answers with
associated value estimates, the policies in this chapter have
so far not differentiated between more or less successful
replies. For LGR, a move reply that has proved itself in
several won playouts in a row is indistinguishable from an-
other reply that was stored due to a single win—both are
in the reply table. Also, an excellent answer that has been
deleted as a result of one unlucky playout is no different
from a very weak answer that loses at every attempt—both
are not in the table.

As the success of the last-good-reply policy suggests, per-
formance in the most recent simulations is a better criterion
for move replies than average performance over a longer
timespan, possibly because it allows for quicker fluctuation
in the reply tables and thus for more exploratory behavior.
This section examines the possibility of a compromise: A
ranking between different replies based on their very recent
successes, instead of a large number of simulation returns.

The last-good-reply policy with scoring (LGRS) associates
each move reply with an integer value. This integer is set to
1 when a new reply is stored in the table; it is incremented
whenever the stored reply appears in another won simu-
lation, and decremented whenever the reply is used and
the simulation is lost. If the integer reaches zero, the corre-
sponding move entry is deleted. This has the effect of more
stability in the reply table, since replies are less likely to be
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forgotten due to random noise; however, it still allows for
relatively quick fluctuation, since the value counters do not
stabilize over time.

LGRS has two parameters: The number of replies stored
per opponent move, and the maximal value of the integer
counters. This cap value is another measure intended to fa-
cilitate quicker fluctuation, as a move can only be a certain
number of losses away from deletion at any given time. In
the simulation phase, the stored reply with the highest in-
teger value is chosen. If it is illegal, the standard MOGO

policy serves as fallback.

The following variants have been tested:

� LGRS-1-5 maintains only one move reply for every
opponent move, and caps the value counters at five.

� LGRS-3-5-a stores up to three move replies for every
opponent move, and also caps the value counters at
five. If three answers to a given move exist in the table
and a new successful reply arrives, it is discarded in
this version.

� LGRS-3-5-b is identical to LGRS-3-5-a, except that a
newly arriving reply automatically overwrites the ex-
isting reply with the lowest value counter.

� LGRS-3-5-c is identical to LGRS-3-5-b, except that in
case of a lost simulation, a reply is immediately re-
moved from the table instead of just decrementing its
counter. Incrementing remains unchanged.

LGRS-1 requires space for 2 � 2x integers in total, where x is
the number of intersections—half of that for reply moves,
and half for value counters. LGRS-3 needs three times as
much space (4332 integers).

Experimental Results

In figure 6.19, the LGRS policies are compared to LGRF-
1 as described in section 6.2. LGRS-1-5 played 306 games
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against GNUGO (153 as White, 153 as Black), LGRS-3-5-a
played 790 games (395 as White, 395 as Black), LGRS-3-5-b
played 648 games (324 as White, 324 as Black), LGRS-3-5-c
played 522 games (261 as White, 261 as Black), and LGRF-
1 played 448 games (224 as White, 224 as Black). OREGO

simulated 25,000 games per move.
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Figure 6.19: Performance of the LGRS policies.

All four tested variants of the LGRS policy perform signifi-
cantly worse than LGRF-1 (p < 0:001).

6.3.14 Move Answer Tree with Last Good Replies

The last experiments described in this chapter combine
ideas from the LGR policy and the move answer tree pre-
sented in chapter 5. In particular, the storage of move
replies without value estimates is combined with the ability
to selectively grow into the direction of frequently appear-
ing contexts.

The LGR-MAT policy maintains a tree which differs from
the move answer tree in two respects. First, the move an-
swer tree stores win and run statistics for moves in order to
compute conditional value estimates. In the LGR-MAT tree
however, every node contains only the last successful an-
swer to the move sequence leading from itself to the root.
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Second, the move answer tree as introduced in chapter 5
grows into the future: In a path from the root to a leaf node,
branches appear in the order of their corresponding moves
in a simulation. The previously played move is always rep-
resented by a branch leading to a leaf. The LGR-MAT tree,
on the other hand, grows into the past: The order of moves
in a simulation corresponds to a path from a leaf to the root,
and the previously played move is always a branch adja-
cent to the root5.

Like the move answer tree, the LGR-MAT tree can be im-
plemented as one unified tree or as two seperate trees. In
the case of seperate trees, shown below for simplicity, one
tree stores all of White’s replies and one tree those for Black.

r
white d4

n1
white d4

n4
white d4

white c4

n2
white c3

n3
white c3

n5
white c4

n6
white c3

white c3
white c4

black c3
black c4

black d4

Figure 6.20: The LGR-MAT tree.

In the toy instance of an LGR-MAT tree shown in figure
6.20, node n2 stores the information that White’s last suc-
cessful reply to black c4 was c3, and node n5 stores White’s
last successful answer to white c3 – black d4: c4.

The LGR-MAT tree has two parameters: A limit to the max-
imal tree depth, and the number of times a deeper context
(such as white c3 – black d4) has to appear before a node for
it is created as a child to a shallower context (such as black

5Further experiments are needed to determine the effect of growth
direction.
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d4). The reason for the depth limit is the assumption that
long contexts have very low chances of reappearing, mak-
ing the storage of good answers futile. The reason for the
node creation delay is the attempt to distinguish between
randomly appearing move sequences, and move sequences
that frequently reappear due to their efficiency.

Two variants of LGR-MAT have been tested so far: LGR-
MAT-a with a maximum tree depth of five and creation of
child nodes at second appearance, and LGR-MAT-b with a
maximum tree depth of three and creation of child nodes at
first appearance.

Experimental Results

In figure 6.21, the LGR-MAT policies are compared to
LGRF-2 as described in section 6.2. LGR-MAT-a played
452 games against GNUGO (226 as White, 226 as Black),
LGR-MAT-b played 370 games (185 as White, 185 as Black),
and LGRF-2 played 316 games (158 as White, 158 as Black).
OREGO simulated 50,000 games per move in the LGRF-2
condition, and 20,000 simulations per move in the LGR-
MAT conditions in order to achieve comparable computa-
tion time.

0:45 0:5 0:55 0:6

LGR-MAT-b

LGR-MAT-a

LGRF-2

Winrate against GNUGO

Figure 6.21: Performance of the LGR-MAT policies.

Both tested variants of the LGR-MAT policy perform sig-
nificantly worse than LGRF-2 (p < 0:001). The difference
between LGR-MAT-a and LGR-MAT-b is not significant.
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Chapter 7

Other Experiments

This chapter reports on experiments on Monte Carlo Tree
Search that are not directly related to the overarching topic
of adaptive playout policies, but have been conducted in
the process of exploring various facets of the algorithm.

7.1 Multi-Start MCTS

In the context of Single-Player MCTS, Schadd et al. (2008)
applied the concept of Meta-Search: a search method that
uses other searches to compute its result. The simple form
of Meta-Search used consisted in restarting the Monte Carlo
algorithm several times and dividing available time among
these searches, instead of spending it on a single long
search process. Eventually, the result with the highest score
found in all searches was returned. This method was in-
tended to avoid getting caught in local optima.

Due to the indeterministic nature of Monte Carlo Tree
Search, it is worthwile to test whether the idea applies to
Go as well. The following two variants of LGRF-2 have
been created to answer the question: Are two searches of
length 1

2�, started with different random seeds, more infor-
mative than a single search of length �?
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� LGRF-2-M-a plays the move with the highest number
of wins summed up over the two searches.

� LGRF-2-M-b plays the move with the highest number
of wins in any of the two searches.

7.1.1 Experimental Results

In figure 7.1, the performance of the LGRF-2-M-a policy is
compared to LGRF-2 as described in section 6.2. LGRF-2-
M-a played 364 games against GNUGO (182 as White, 182
as Black), and LGRF-2 played 1256 games (628 as White,
628 as Black) against the same program. OREGO simulated
25,000 games per move, or 2 times 12,500, respectively.

0:43 0:44 0:45 0:46

LGRF-2-M-a

LGRF-2

Winrate against GNUGO

Figure 7.1: Performance of the LGRF-2-M-a policy.

LGRF-A-M-a could not be shown to perform significantly
different from LGRF-2. LGRF-A-M-b’s results are not yet
available.

7.2 Feasibility

In the playout phase of simulated games, OREGO plays
only moves that are found to be feasible. The definition of
feasibility for MCTS Go traditionally excludes moves in the
eyes of groups of the own color. This rule rarely excludes
interesting moves, and helps to ensure eventual termina-
tion of playouts, since it avoids the killing of living groups
by involuntary cooperation of players. The definition of
eye (or eye-like point) used by OREGO is “an empty inter-
section surrounded by friendly stones and having no more
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than one (zero at the board edge) diagonally adjacent en-
emy stones” (OREGO documentation, Drake et al. (2009)).

In order to restrict the branching factor of the search tree,
even more moves can be declared infeasible. Moves on the
first line, for example, are almost never useful if there is are
no stones already present within a relatively small distance.
Not considering these moves for sampling can potentially
speed up convergence to optimal solutions.

Orego 6.10 defines only those moves as feasible that are, in
addition to not being an eye-like point, either on the third
or fourth line from the edge or within the knight’s neigh-
borhood of another stone. In particular at the beginning of
the game, this drastically cuts down the number of move
choices, and still seems to allow for reasonable play.

However, MCTS often prefers a very open, unorthodox
style of play with opening moves far from the corners and
edges. Moreover, staking out potential territory on the
board often requires moves that are more “far out” than
allowed by OREGO’s feasibility definition. For this reason,
two alternative definitions have been tested in combination
with the LGRF-2 policy:

� LGRF-2-F-a defines any move as feasible that is not an
eye-like point, and that is either not on the first line or
within a large knight’s neighborhood of another stone.
Figure 7.2 shows the large knight’s neighborhood of
a black stone on e5.

� LGRF-2-F-b defines all moves as feasible that are not
eye-like points.

7.2.1 Experimental Results

In figure 7.3, the performance of the LGRF-2-F-a and LGRF-
2-F-b policies is compared to that of the standard LGRF-2
player of OREGO. LGRF-2-F-a played 1066 games against
GNUGO (533 as White, 533 as Black), LGRF-2-F-b played
360 games (180 as White, 180 as Black), and LGRF-2 played
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Figure 7.2: The large knight’s neighborhood of e5.

1256 games (628 as White, 628 as Black) against the same
program. OREGO simulated 25,000 games per move.

0:46 0:48 0:5 0:52

LGRF-2-F-b

LGRF-2-F-a

LGRF-2

Winrate against GNUGO

Figure 7.3: Performance of the LGRF-2-F policies.

The results show that LGRF-2-F-a has a significantly higher
winrate than LGRF-2 (p < 0:02). No significant difference
between LGRF-2-F-b and LGRF-2 could be shown.

7.3 Pattern Memory

The classic MOGO policy, as detailed in section 3.4.1, con-
sists of three subheuristics ordered in priority: The escape
heuristic, the pattern heuristic, and the capture heuristic. If
none of the three heuristics return a move, the policy falls
back to random move selection.
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One of these policies, the pattern matcher, potentially loses
information after every call: It tries to match a set of pat-
terns around the previous move, and if matches are found,
picks one of them at random to play the suggested move.
Information about other matching patterns is discarded af-
terwards. While the creators of MOGO claim that they
found local matching to be superior to global matching
Gelly et al. (2006), it might be reasonable to store infor-
mation about pattern-suggested moves that have not been
played.

The experiment presented in this section tests a simple
modification of the regular MOGO policy as employed by
OREGO. The pattern heuristic is extended to a pattern col-
lector by saving every match found besides the returned
one. Another heuristic, the pattern retriever, checks whether
saves patterns are still applicable, and plays one of their
associated moves. The last-good-reply policy with pattern
memory (LGRF-2-PM) consists of five subheuristics in the
following order: last-good-reply heuristic (LGRF-2), escape
heuristic, pattern collector, capture heuristic, pattern re-
triever.

LGRF-2-PM has the same space requirements as LGRF-2,
plus an additional 2x integers, where x is the number of
intersections on the board.

7.3.1 Experimental Results

In figure 7.4, the LGRF-2-PM policy is compared to LGRF-2
as described in section 6.2. LGRF-2-PM played 916 games
against GNUGO (458 as White, 458 as Black), and LGRF-
2 played 398 games (199 as White, 199 as Black). OREGO

simulated 50,000 games per move.

No significant difference between LGRF-2-PM and LGRF-2
could be shown.
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0:61 0:61 0:62 0:62

LGRF-2-PM

LGRF-2

Winrate against GNUGO

Figure 7.4: Performance of the LGRF-2-PM policy.

7.4 Dynamic Komi

As explained in section 4.1.1, Monte Carlo Tree Search of-
ten behaves suboptimally in extreme situations. When the
algorithm is very far behind or very far ahead of his op-
ponent, in particular in handicap games, it has difficulties
distinguishing the winning chances of available moves.

Although no publications exist to the best of my knowl-
edge, discussions on the computer go mailing list1 have
suggested the possibility of using dynamic komi. Variable
komi can shift winrates into a less extreme and more easily
managable range—e.g. from 95 + % down to 50 � 60%,
which enables the algorithm to more clearly distinguish
good from bad moves, and motivates it to play less pas-
sively as Black in a handicap game. However, it obscures
the true goal of the game to the agent and can therefore
clearly lead to suboptimal decisions.

As an example: If the regular komi is 7:5, Black has to
achieve 8 more points than White to win the game. Increas-
ing the komi dynamically to 11:5 means that in its internal,
simulated games, Black has to achieve 12 points more than
White now2. As a result, Black takes greater risks and plays
more aggressively, which can result in stronger play. On the
other hand, Black will not be able to take the secure path
to a 9-point win, if one exists; dynamic komi can force the
player to aim higher than advisable.

1http://dvandva.org/cgi-bin/mailman/listinfo/computer-go; the
archives are available at http://blog.gmane.org/gmane.games.devel.go

2The real game is not affected by this, of course.

http://dvandva.org/cgi-bin/mailman/listinfo/computer-go
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One preliminary experiment with a simple implementa-
tion of dynamic komi has been conducted with the OREGO

player using the LGRF-2 policy. The modified algorithm,
called LGRF-2-DK for last-good-reply with forgetting (two-
move contexts) and dynamic komi, changes the komi value
after every completed move search according to the follow-
ing rules (without loss of generality, the algorithm plays
Black):

� If the player won more than 55% of playouts in the
past search, winning the game is artificially made
more difficult. The komi value used in simulations
is raised by one stone.

� If the player won more than 60% of playouts in the
past search, internal komi is raised by two stones at
once. Winrates are thus kept roughly in the 50� 60%
range.

� If the player won less than 45% of playouts in the
past search, and internal komi had been artificially in-
creased in the past, it is decreased again by one stone.
The estimation of being ahead has to be corrected.
However, komi is not decreased below the regular
komi value of the real game—this would create the
illusion of safety while the algorithm is losing.

� If the player won less than 40% of playouts in the past
search, and internal komi is above its regular value, it
is decreased again by two stones at once, down to at
least the regular value.

7.4.1 Experimental Results

In figure 7.5, the LGRF-2-DK policy is compared to LGRF-2
as described in section 6.2. LGRF-2-DK played 920 games
against GNUGO (460 as White, 460 as Black), and LGRF-
2 played 1256 games (628 as White, 628 as Black). OREGO

simulated 25,000 games per move.

LGRF-2-DK is almost significantly stronger than LGRF-2
(p < 0:06).
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Figure 7.5: Performance of the LGRF-2-DK policy.
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Chapter 8

Conclusion and Future
Work

This chapter summarizes the results of the thesis, and ad-
dresses several directions for future research. It includes
approaches that have only been skimmed due to time con-
straints, but could be taken up and explored further.

8.1 Conclusion

The goal of this work was to solve or mitigate the problem
of narrow sequences in Monte Carlo Go, together with the
related horizon problem. The chosen approach was the cre-
ation of learning playout policies that adapt to the structure of
the search space, replacing or complementing the predom-
inantly static playout policies traditionally used in MCTS.

In order to extend learning and adaptiveness from the
tree part of MCTS to the simulations, a well-known phe-
nomenon was utilized: The existence of locally optimal
move replies in Go. The main idea was to explore a new
form of generalization between states when judging and
choosing a move. Instead of only taking the move’s past
performance from the current position into account—as in
plain MCTS—and instead of considering the move’s past
performance from all (subsequent) states—as in AMAF
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(RAVE)—only success or failure in states that have the same
previous move1 as the current position were considered.

Two strategies were devised to find promising move an-
swers to previously played moves. The first strategy used
estimates of a conditional value function depending on
previous moves to compare possible answers and choose
the best one (described in chapter 5). The second strategy,
building on work by Peter Drake, used only information
about the last playout-winning answers to a given move
(covered in chapter 6).

The best-reply strategy, while seemingly successful in in-
creasing the percentage of locally correct move decisions,
did not achieve an overall improvement in playing strength
(see section 5.3.2). Further refinements are necessary.

The last-good-reply strategy was successfully improved by
the addition of forgetting (see section 6.2). Two extensions
of the technique—replies to 3�3 neighborhoods instead of
isolated moves (see section 6.3.2), and local moves from
won playouts as zeroth-order replies (see section 6.3.12)—
have shown promise and will be examined further.

These methods meet three of the five research objectives
outlined in section 4.2.1: Solutions to subproblems of Go
are stored, namely successful answers to single moves or
sequences of moves. These solutions are tentative and
changeable in character, as forgetting allows for quick fluc-
tuation. The solutions are generalized by applying them
not only to the state in which they were found, but to all
states that have the same previous move or previous se-
quence of moves, or otherwise similar recent game history.
The goals of automatically refining this generalization and
of asymptotical convergence could not be met yet.

In summary, it can be stated that the results of using move
replies in dynamic playout policies are encouraging and
justify further research.

Apart from the main goal of this work, experiments with
other elements of the OREGO program were realised as de-

1or sequence of previous moves, or otherwise similar recent history
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tailed in chapter 7.

8.2 Future Work

8.2.1 Best Replies

Future research into the best-reply approach discussed
in chapter 5 will need to find deeper insights into the
reasons why the BMR and BMR-P policies failed. The
exploration-exploitation tradeoff could be addressed by
improved multi-armed bandit algorithms, while an appro-
priate measure of relation between playing a given reply
and winning the game could help distinguishing between
“forced” and “free” replies.

Due to the complexity of the problem, it might be advisable
to take a step back from Go to a suitable toy game—with a
game tree small enough to study the entire search process
in detail.

8.2.2 Last Good Replies

As a next step, the LGRF policy (section 6.2) will be ex-
tended to LGRF-3 in order to find the maximal context
length that still increases strength. The Pattern LGR pol-
icy (section 6.3.2) will be tested with a variety of differ-
ent neighborhood definitions—e.g. only the four adjacent
points instead of a 3�3 square, or neighborhoods of irreg-
ular form. These neighborhoods may also be used to im-
prove the LGM-2-L-b policy (section 6.3.12).

Possible directions for future research into last-good-reply
policies are:

� Varying the success criterion for stored replies: e.g.
by storing only replies that are part of several won
playouts.
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� Varying the concept of move contexts: e.g. by allow-
ing in a context not only the previous moves, but also
moves further in the past of a simulation.

� Varying the definition of a trigger for a reply: e.g.
by replacing moves on fixed intersections with more
general events like a certain group having a low num-
ber of liberties.

� Varying the definition of a reply: e.g. by replacing
moves on fixed intersections with more general ac-
tions like an attack on a certain group, or a connection
between two friendly groups.

Concerning the LGR-MAT policy (section 6.3.14), future ex-
periments will try to determine whether the growth direc-
tion of the tree affects performance, and whether high- and
low-quality move replies can be distinguished in order to
prune the tree for greater memory efficiency.

8.2.3 The Road Ahead

Several avenues for further investigation presented them-
selves over the course of this work.

First, the concept of correlation or covariance between ex-
ecuting a given action (not necessarily a simple move an-
swer) and winning a game merits further exploration. It
could point to ways how generalizable partial strategies
can be filtered from the background noise of random simu-
lations.

Second, incremental decision trees or other methods for
mining high-speed data streams could be adapted to find
distinguishing features of winning and losing moves, move
answers or other partial strategies in Monte Carlo play-
outs. The problem here is the extreme speed necessary for
MCTS simulation, as well as the one-pass scenario where
large parts of the search history cannot easily be retained in
memory.

Third, adaptiveness and learning could also be applied to
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RAVE estimates and their underlying generalization over
states, which has not been researched thoroughly. RAVE
algorithms could learn from playouts which moves can be
permuted in value backup, and which moves have to be
played in a fixed order, e.g. because they are forced replies.

Fourth, the creation of efficient opening books and their
seamless integration with MCTS search is a promising field
of study. Go openings are usually categorized into standard
move sequences in a single corner (joseki) and, far more
rarely, whole-board move sequences (fuseki). Copying pro-
fessional joseki, however, often neglects any interaction be-
tween the four corners, while copying high-level fuseki is
problematic due to data sparseness.

Fifth, research into more efficient evaluation of MCTS al-
gorithms would be worthwile. A technique that allows
for quicker testing and parameter optimization, while still
correlating highly with traditional measures of playing
strength, could provide a considerable boost to work on
computer Go and related algorithms.

Last but not least, the methods described in this work ex-
ploit domain-specific knowledge only to a small degree.
It is an interesting question which other tasks besides Go
can make use of recent histories of agents to improve be-
haviour in unknown states. The potential of Monte Carlo
Tree Search in general, and adaptive playout policies in
particular, has yet to be uncovered in many real-world do-
mains with large search spaces.
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